Numerical method

The *level-set* method

Embedded boundaries

Hybrid Embedded boundaries/ *level-set* method

Test cases

1D solidification

Melt of a particle

A hybrid *level-set/embedded boundary* numerical method for the simulation of solidification/melt problems

Alexandre Limare¹ Stéphane Popinet² Christophe Josserand³

GdR Transinter, 16/12/19

¹Post Doctoral fellow, Institut Polytechnique de Paris, LadHyX, alexandre.limare@ladhyx.polytechnique.fr ²CNRS. Institut Jean le Rond ∂'Alembert, popinet@basilisk.fr

³CNRS, Institut Polytechnique de Paris, LadHyX, christophe.josserand@ladhyx.polytechnique.fr

Numerical method

The *level-set* method

Embedded boundaries

Hybrid Embedded boundaries/ level-set method

Test cases

1D solidification Melt of a particle

Figure: Ice falling from bridge cables

Figure: Power outage due to ice

Solidification/melt problems

Figure: Drone de-icing of a wind turbine

Figure: Iced wing

Numerical method

The *level-set* method

Embedded boundaries

Hybrid Embedded boundaries/ level-set method

Test cases

1D solidification Melt of a particle

Figure: Ice falling from bridge cables

Figure: Power outage due to ice

Solidification/melt problems

Figure: Drone de-icing of a wind turbine

Figure: Iced wing

How can we properly do numerical simulation of solidification/melt problems ?

Numerical method

The level-set method

Embedded boundaries

Hybrid Embedded boundaries/ *level-set* method

Test cases

1D solidification Melt of a particle

• ϕ a higher-dimensional function

 Interface Γ: zero level-set of φ (hypersurface)¹.

In our cases, ϕ is initialized as a signed distance function.

Figure: Interface Γ and different level-sets of ϕ

Level set method

¹S. Osher and J. A. Sethian. "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations". In: *Journal of computational physics* 79.1 (1988), pp. 12–49.

Numerical method

The level-set method

Embedded boundaries

Hybrid Embedded boundaries/ *level-set* method

Test cases

1D solidification Melt of a particle

• ϕ a higher-dimensional function

 Interface Γ: zero level-set of φ (hypersurface)¹.

In our cases, ϕ is initialized as a signed distance function.

$$\partial_t \phi + \mathbf{v}_{\mathbf{pc}} \cdot \nabla \phi = 0. \tag{1}$$

v_{pc}: phase change velocity field.

Figure: Interface Γ and different level-sets of ϕ

Level set method

 $^{^1{\}rm Osher}$ and Sethian, "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations".

Numerical method

The level-set method

Embedded boundaries

Hybrid Embedded boundaries/ *level-set* method

Test cases

1D solidification Melt of a particle

• ϕ a higher-dimensional function

 Interface Γ: zero level-set of φ (hypersurface)¹.

In our cases, ϕ is initialized as a signed distance function.

$$\partial_t \phi + \mathbf{v}_{\mathbf{pc}} \cdot \nabla \phi = 0. \tag{1}$$

v_{pc}: phase change velocity field.

Figure: Interface Γ and different level-sets of ϕ

Level set method

 $^{^1{\}rm Osher}$ and Sethian, "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations".

Numerical method

The level-set method

Embedded boundaries

Hybrid Embedded boundaries/ *level-set* method

Test cases

1D solidification Melt of a particle

• ϕ a higher-dimensional function

 Interface Γ: zero level-set of φ (hypersurface)¹.

In our cases, ϕ is initialized as a signed distance function.

$$\partial_t \phi + \mathbf{v}_{\mathbf{pc}} \cdot \nabla \phi = 0. \tag{1}$$

 $\begin{array}{l} \mathbf{v_{pc}:} \text{ phase change velocity field.} \\ \Rightarrow \text{ Construct a continuous } \mathbf{v_{pc}} \text{ field using } \\ \mathbf{v_{pc}}|_{\Gamma} \text{ and } \phi \end{array}$

Level set method

Figure: Interface Γ and different level-sets of ϕ

 $^{^1 \}text{Osher}$ and Sethian, "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations".

Numerical method

The level-set method

Embedded boundaries

Hybrid Embedded boundaries/ *level-set* method

Test cases

1D solidification Melt of a particle

Extrapolation² of v_{pc}|_Γ in the vicinity of the interface:

$$\frac{\partial v_{pc}}{\partial t} + \operatorname{sign}(\phi) \left(\mathbf{n} \cdot \nabla v_{pc} \right) = 0$$

with:

$$\mathbf{n} = \frac{\nabla \phi}{|\nabla \phi|}$$

Reconstruction of the velocity

Figure: Local advection of vpc

²S Chen et al. "A simple level set method for solving Stefan problems". In: *Journal of Computational Physics* 135.1 (1997), pp. 8–29.

Numerical method

The level-set method

Embedded boundaries

Hybrid Embedded boundaries/ *level-set* method

Test cases

1D solidification

Extrapolation² of v_{pc}|_Γ in the vicinity of the interface:

$$\frac{\partial v_{pc}}{\partial t} + \operatorname{sign}(\phi) \left(\mathbf{n} \cdot \nabla v_{pc} \right) = 0$$

with:

$$\mathbf{n} = \frac{\nabla \phi}{|\nabla \phi|}$$

 \Rightarrow Narrow band approximation.

Reconstruction of the velocity

Figure: Local advection of v_{pc}

²Chen et al., "A simple level set method for solving Stefan problems".

Numerical method

The level-set method

Embedded boundaries

Hybrid Embedded boundaries/ level-set method

Test cases

1D solidification

Melt of a particle

Issue

- Advection \rightarrow numerical diffusion
- \Rightarrow correction method is required
- \Rightarrow reinitialization/redistancing of ϕ^0 :

$$rac{\partial \phi}{\partial t} = \ ext{sgn}(\phi^0) \left(1 -
abla \phi
ight)$$

Solved only in the Narrow Band³

Redistancing of ϕ

- (a) Initial ϕ field
- (b) Final ϕ w/o redistancing

(c) Final ϕ w/ redistancing

Figure: Redistancing required

³Giovanni Russo and Peter Smereka. "A remark on computing distance functions". In: *Journal of Computational Physics* 163.1 (2000), pp. 51–67.

Numerical method

The level-set method

Embedded boundaries

Hybrid Embedded boundaries/ *level-set* method

Test cases

1D solidification Melt of a particle

Pros

- Simple to implement
- Made for flows with complex interfacial topologies; splitting/merging, shear...

Level-set methods

Numerical method

The level-set method

Embedded boundaries

Hybrid Embedded boundaries/ *level-set* method

Test cases

1D solidification Melt of a particle

Pros

- Simple to implement
- Made for flows with complex interfacial topologies; splitting/merging, shear...

Cons

• Non-conservative (reinitialization step)

Level-set methods

Numerical method

The *level-set* method

Embedded boundaries

Hybrid Embedded boundaries/ *level-set* method

Test cases

1D solidification

Melt of a particle

Concept

- Intersect a boundary of general shape with a grid (here Cartesian)
- Modify volume and area fractions of the intersected cells (Finite Volume formulation)

Embedded Boundaries

(b) Passive tracer with an cylindrical embedded boundary

Figure: Flow past a circle with embedded boundaries

Numerical method

The *level-set* method

Embedded boundaries

Hybrid Embedded boundaries/ *level-set* method

Test cases

1D solidification

Melt of a particle

Concept

- Intersect a boundary of general shape with a grid (here Cartesian)
- Modify volume and area fractions of the intersected cells (Finite Volume formulation)

Embedded Boundaries

(b) Passive tracer with an cylindrical embedded boundary

Figure: Flow past a circle with embedded boundaries

Numerical method

The *level-set* method

Embedded boundaries

Hybrid Embedded boundaries/ *level-set* method

Test cases

1D solidification Melt of a particle

Gradients on the interface Johansen and Colella's method⁴:

$$\nabla \phi|_{f} = \frac{1}{d_{2} - d_{1}} \left(\frac{d_{2}}{d_{1}} (\phi_{f} - \phi_{1}) - \frac{d_{1}}{d_{2}} (\phi_{f} - \phi_{2}) \right)$$

second-order accurate

Embedded Boundaries

Figure: embedded boundary principle

⁴H. Johansen and P. Colella. "A Cartesian grid embedded boundary method for Poisson's equation on irregular domains". In: *Journal of Computational Physics* 147.1 (1998), pp. 60–85.

Numerical method

The *level-set* method

Embedded boundaries

Hybrid Embedded boundaries/ *level-set* method

Test cases

1D solidification Melt of a particle

Gradients on the interface Johansen and Colella's method⁴:

$$\nabla \phi|_{f} = \frac{1}{d_{2} - d_{1}} \left(\frac{d_{2}}{d_{1}} (\phi_{f} - \phi_{1}) - \frac{d_{1}}{d_{2}} (\phi_{f} - \phi_{2}) \right)$$

second-order accurate

Non-moving boundaries, or solid movement using ALE formulation in its original formulation !

Figure: embedded boundary principle

Embedded Boundaries

 $^{^{\}rm 4}$ Johansen and Colella, "A Cartesian grid embedded boundary method for Poisson's equation on irregular domains".

Numerical method

The *level-set* method

Embedded boundaries

Hybrid Embedded boundaries/ *level-set* method

Test cases

1D solidification

Hybrid Embedded boundaries/level-set method

Remark

• Level-set function used for definition of the embedded boundaries

Numerical method

The *level-set* method

Embedded boundaries

Hybrid Embedded boundaries/ level-set method

Test cases

1D solidification Melt of a particle

Hybrid Embedded boundaries/level-set method

Remark

- Level-set function used for definition of the embedded boundaries
- \Rightarrow Combine a *level-set* method with embedded boundaries

Numerical method

The *level-set* method

Embedded boundaries

Hybrid Embedded boundaries/ level-set method

Test cases

1D solidification Melt of a particle

Hybrid Embedded boundaries/level-set method

Remark

- Level-set function used for definition of the embedded boundaries
- \Rightarrow Combine a $\mathit{level-set}$ method with embedded boundaries

Main idea

- 2 fluids : Calculation inside and outside of the boundary with two set of fields
- v_{pc} only field defined in both phases with a meaning

We use the gradients defined by the high-order approximation of the embedded boundary method and set:

Stefan condition:
$$\mathbf{v}_{pc}|_{\Gamma} = \frac{1}{L_H} \left(\frac{\lambda_L}{\rho_L} \nabla T_L|_{\Gamma} - \frac{\lambda_S}{\rho_S} \nabla T_S|_{\Gamma} \right)$$
Gibbs-Thomson equation: $T_{\Gamma} = T_m - \epsilon_{\kappa} * \kappa - \epsilon_v * v_{pc}$

1

-1

١

Numerical method

The *level-set* method

Embedded boundaries

Hybrid Embedded boundaries/ level-set method

Test cases

1D solidification Melt of a particle

Hybrid Embedded boundaries/level-set method

Remark

- Level-set function used for definition of the embedded boundaries
- \Rightarrow Combine a $\mathit{level-set}$ method with embedded boundaries

Main idea

- 2 fluids : Calculation inside and outside of the boundary with two set of fields
- v_{pc} only field defined in both phases with a meaning

We use the gradients defined by the high-order approximation of the embedded boundary method and set:

Stefan condition:
$$\mathbf{v}_{\rho c}|_{\Gamma} = \frac{1}{L_H} \left(\frac{\lambda_L}{\rho_L} \nabla T_L|_{\Gamma} - \frac{\lambda_S}{\rho_S} \nabla T_S|_{\Gamma} \right)$$
Gibbs-Thomson equation: $T_{\Gamma} = T_m - \epsilon_{\kappa} * \kappa - \epsilon_{\nu} * v_{\rho c}$

1

١

Possible use of 2 different solvers

Numerical method

The level-set method

Embedded boundaries

Hybrid Embedded boundaries/ level-set method

Test cases

1D solidification

Melt of a particle

1D solidification - diffusion

Initial position off equilibrium

In both phases:
$$\frac{\partial T}{\partial t} = D\Delta T$$
 $\mathbf{v}_{pc}|_{\Gamma} \approx A \times t^{-0.5}$

$$\lambda_L = \lambda_S = 1$$
; $D = 1$; $St = \frac{C_P \Delta I}{L_H}$

Numerical method

- The level-set method
- Embedded boundaries
- Hybrid Embedded boundaries/ level-set method
- Test cases
- 1D solidification
- Melt of a particle

2D star-shaped ice particle melting

- Interface Γ(r, θ): r (1 + 0.2 * cos(8θ)) − 1 = 0
- Gibbs-Thomson: $T_{\Gamma} = T_m \epsilon_{\kappa} * \kappa \epsilon_v * v_{pc}$

(a) test

(b) Interface at different times during calculation

Figure: 2D star-shaped ice particle

Temperature field

Numerical method

- The *level-set* method
- Embedded boundaries
- Hybrid Embedded boundaries/ *level-set* method

Test cases

- 1D solidification
- Melt of a particle

Perspectives

- In-depth analysis of simple cases (linear stability)
- Dendrite growth
- Solidification with convection

Numerical method

The *level-set* method

Embedded boundaries

Hybrid Embedded boundaries/ level-set method

Test cases

1D solidification

Melt of a particle

Code available at : http://basilisk.fr/sandbox/alimare/

Thank you for your attention

Numerical method

- The *level-set* method
- Embedded boundaries
- Hybrid Embedded boundaries/ level-set method

Test cases

1D solidification

Melt of a particle

Stencil for interpolation can be too small, leading to a decrease in the order of accuracy of the method. \Rightarrow Can be circumvented by using Adaptive Mesh Refinement.

Known Issue

Figure: Embedded zone is too small for interpolation

Numerical method

- The level-set method
- Embedded boundaries
- Hybrid Embedded boundaries/ level-set method

Test cases

1D solidification

Melt of a particle

Same case with an initial Gaussian interface Case with both melting and solidification due to the Gibbs-Thomson relation. Temperature field

Gaussian bump

Figure: Interface at different times during the simulation

Numerical method

The level-set method

Embedded boundaries

Hybrid Embedded boundaries/ level-set method

Test cases

1D solidification

Melt of a particle

Hybrid Embedded boundaries/level-set method

Figure: Initial condition for the v_{pc} reconstruction

Numerical method

The level-set method

Embedded boundaries

Hybrid Embedded boundaries/ level-set method

Test cases

1D solidification

Melt of a particle

Hybrid Embedded boundaries/level-set method

Figure: Initial condition for the v_{pc} reconstruction

Numerical method

The level-set method

Embedded boundaries

Hybrid Embedded boundaries/ level-set method

Test cases

1D solidification

Melt of a particle

Hybrid Embedded boundaries/level-set method

Numerical method

The level-set method

Embedded boundaries

Hybrid Embedded boundaries/ level-set method

Test cases

1D solidification

Melt of a particle

Hybrid Embedded boundaries/*level-set* method

Figure: Initial condition for the v_{pc} reconstruction