Modèle multicouche pour la description de films (presque) fins de tensioactifs.

Journées du GDR Transinter - 18 mars 2021

Clément Robert, Arnaud Antkowiak, Frédéric Mondiot, Cécile Monteux, Laurent Maillaud, Jérémie Teisseire

clement.robert2@saint-gobain.com

Institut Jean Le Rond d'Alembert - Sorbonne Université, CNRS Laboratoire Surface du Verre et Interfaces - Saint-Gobain, CNRS Laboratoire Sciences et Ingénierie de la Matière Molle - ESPCI, CNRS

5 cm

Process
Process
Liquid film deposition

Drying

Advantages → Quick functionalization of large glass surfaces SG Albarino SG Planilaque

Limitations during drying

- \rightarrow Defects
- \rightarrow Instabilities
- \rightarrow Dewetting

Iridescence of a coating after drying *Antireflet AR3*, RFL, Laurent Maillaud

 $\begin{array}{l} h_{humid} \sim 20 \; \mu m \\ \lambda_{defects} \sim 1 \; cm \end{array}$

How to obtain homogeneous thin waterborne coatings ?

\rightarrow Non-wetting liquid

→ Orange peel

 \rightarrow Aqueous films on glass \rightarrow No particles

Evaporation-induced Marangoni flows

What is the influence of surfactants

on aqueous film stability during drying ?

EXPERIMENTS Instability quantification

- \rightarrow Exponential growth of the amplitude
- \rightarrow Evaporation-induced instability

MULTILAYER MODEL > Semi-discrete, non-hydrostatic, multilayer description

Stéphane Popinet (2020). basilisk.fr/src/layered/hydro.h

New approach for extended films :

- Include non-hydrostatic effects \checkmark
- Conservative
- Numerically efficient \checkmark
- Interface description \checkmark
- For metre-scale to kilometre-scale waves \checkmark

Stéphane Popinet basilisk.fr

Surface tension implementation for micrometre-scale to metre-scale waves

- Laplace pressure : Top boundary conditions on pressure $\phi_S = -\kappa \cdot \gamma / \rho$
- Marangoni flows : Top boundary conditions on vertical viscosity $\frac{\partial u}{\partial y}\Big|_{m} = \frac{1}{\gamma} \|\nabla_{S} \gamma\|$
- Surfactants : Experimental isotherms, surface advection .

MULTILAYER MODEL **Test cases**

Laplace pressure

Surfactant adsorption

MULTILAYER MODEL Kapitza instability

8 / 10 Saint-Gobain Confidential & Proprietary

Comparison with Malamataris (2002)

Evaporation-induced Marangoni instability with surfactants

- \rightarrow Adsorption kinetics, evaporation rate...
- ✓ A conservative and numerically efficient description for extended films
- ✓ Implementation for thin (and not so thin) films with micrometer-scale to meter-scale waves
- \rightarrow On the Basilisk sandbox and paper in writing
- Promising to go beyond lubrication, especially for problems with surfactants