

Freezing dynamics of an aqueous foam

Krishan Bumma

Supervisors Thomas Séon Juliette Pierre Axel Huerre

GDR Transinter Aussois 2022

Context

Solidification of disordered media

(c)

Worster et al. 2021

Context

Liquid foam as a complex disordered medium

Gas phase

Context

Solidification of foam

Does an aqueous foam freeze? How fast does it freeze?

Is it still the same foam?

Cox et al. 2001

4

1D solidification of a 3D foam

 $R \approx 25 \ \mu m$ polydispersity 30%

1D solidification of a 3D foam

Square root regime, and second slower regime after $\approx 100s$

Changing the substrate temperature

The foam freezes faster on a colder substrate

Changing the liquid fraction

The liquid fraction ϕ seems to play a role

Effect of the bubble size

The radius does not influence the dynamics during the first regime

Experiment

Recap

Square root regime :
$$\sqrt{D_{eff}(T_s, \phi, \mathcal{R}, \dots)}$$
. t

 $T_s \searrow D_{eff} \swarrow$

 $\phi / D_{eff} /$

Related Stefan problem

$$\rho_{l}C_{p_{l}}\frac{\partial T}{\partial t} = \lambda_{i}\frac{\partial^{2}T}{\partial z^{2}}$$

$$T(h) = 0^{\circ}C$$

$$\rho_{i}L\frac{dh}{dt} = \lambda_{i}\frac{\partial T}{\partial z}(h^{-}) - \lambda_{l}\frac{\partial T}{\partial z}(h^{+})$$

$$\rho_{i}C_{p_{l}}\frac{\partial T}{\partial t} = \lambda_{i}\frac{\partial^{2}T}{\partial z^{2}}$$

$$h(t) = \sqrt{D_{eff}(T_{s}, \ldots) \cdot t}$$

Thievenaz 2019, Kant 2021

Related Stefan problem

$$(\rho C_p)_{fl} \frac{\partial T}{\partial t} = \lambda_{fl} \frac{\partial^2 T}{\partial z^2}$$

$$(\rho C_p)_{fi} \frac{\partial T}{\partial t} = \lambda_{fi} \frac{\partial^2 T}{\partial z^2}$$

$$(\rho C_p)_s \frac{\partial T}{\partial t} = \lambda_s \frac{\partial^2 T}{\partial z^2}$$

$$\phi \rho_l L \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\lambda_{fi}}{\lambda_{fi}} \frac{\partial T}{\partial z} (h^-) - \frac{\lambda_{fl}}{\lambda_{fl}} \frac{\partial T}{\partial z} (h^+)$$

$$h(t) = \sqrt{D_{eff}(T_s, \phi \dots) \cdot t}$$

$$(\rho C_p) \frac{\partial T}{\partial t} = \lambda \frac{\partial^2 T}{\partial z^2}$$

 $\rho_l, \rho_g, C_{p_l}, C_{p_g}, \lambda_l, \lambda_g$

Microstructure information $\rho(\mathbf{x}), \lambda(\mathbf{x}), C_p(\mathbf{x})$

$$(\rho C_p)_f = \phi \rho_l C_{p_l} + (1 - \phi) \rho_g C_{p_g}$$
$$\lambda_f$$

Electrical conductivity

Electrical conductivity

data : Feitosa et al. 2005

Effective medium model $\lambda_{foam} = (1 - \phi)\lambda_{air} + \phi\lambda_l(\frac{1}{3}f_{PB}(\phi) + \frac{2}{3 - \phi}(1 - f_{PB}(\phi)))$

Model

Perspective

Leaving the square root

Leaving the square root

Leaving the square root

Composition of the frozen foam

0.8 ml of thawed foam initial liquid fraction = 13% liquid fraction after freezing = 32%

Leaving the square root

- -A change in the liquid fraction of the overall frozen foam
- -For some samples, the solid layer easily separates into a softer/lighter part and a harder/denser part
- -The liquid foam becomes dimmer, as it gets dryer

Close look in 2D

Different regimes

26

Conclusion

- Thermal conductivity of foam

- Predict the freezing dynamics of the foam for the first regime

- Conduction through air becomes important at low liquid fractions

- Second regime cause by forced drainage

Next : imbibition mechanism and imbibition stopping criterium, influence of surface properties, 2D/ 3D effects

