

Experimental Study of Liquid-Liquid Fragmentation

Bowen Ji, Gagan Kewalramani, Nicolas Rimbert, Yvan Dossmann, Michel Gradeck

LEMTA CNRS Universite de Lorraine, 2 Avenue de la Foret de Haye,

54518, Vandoeuvre-les-Nancy, France

- Gas-liquid atomization has been studied a lot!
- Liquid-liquid atomization is easier!
- No vapour!
- The goal: understand the mechanism!

Experimental Facility

- Electromagnetically controlled injector:
- Pneumatic pressure control
- Cargille fluid (transparent) is injected in water tank of 50x50x40 cm³

	ρ (kg/m3)	μ (Pa-s)
Water	998.2	1.05
Cargille	1896.52	26.02

Surface tension σ = 0.0265N/m

Jets with nozzle diameter 1,2,3 and 4 mm with various injection pressure are produced

Figure:Experimental setup 'JaLad'

IRSM

IRSN

ASTITUT IE RADIOPROTECTION T DF SÜRETÉ NUCLÉAIRI

Cargille Fluid

Original image + Contour + Fitted contour

- Density
 - $\rho = 1896.52 \text{ kg/m}^3$
- Viscosity
 - $\mu = 26.02 \text{ mPa.s}$
- Optical index
 - n = 1.3330 (id. eau)
- Surface tension
 - $\sigma = 0.0265 \text{N/m}$
- Pyrrométhene 597
 - Fluorescent Dye

Cargille Fluid/Laser Sheet

Laser sheet 532nm

- Camera records images with 9000 fps with lens of 150mm focus length (aperture F2.8)
- Images with pixel size of 99.5 µm
- Pyromethene 597-8C9 dye with absorption coefficient

Injector

• a ≠ 5.25 · 10−4L/(mol · cm)at 524nm

Table 1 Velocity (in m/sec), Diameter, Reynolds number (Re) and Weber number (We) for various jets.

Exp:	U_0	Re	We	Exp:	U_0	Re	We	Exp:	U_0	Re	We
D2V1 D3V1 D4V1	$1.92 \\ 1.62 \\ 1.72$	295 375 530	$279 \\ 300 \\ 449$	D2V2 D3V2 D4V2	$2.96 \\ 3.13 \\ 3.05$	455 764 938	$rac{663}{1245}$ 1408	D2V3 D3V3 D4V3	$5.46 \\ 5.96 \\ 5.90$	838 1375 1813	$2248 \\ 4027 \\ 5256$

Non Dimensional Numbers

Experimental Results

IRSEN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

1 Lagrangian Analysis

IRSN

INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Tracks 10 Tracks is a commercial software Filtering and Calibration Detection Tracking To reduce noise in images background subtraction Multiscale threshold method in-homogeneous lighting and absorption effects. Droplet identification clouds contour detection method

11 Tracks

Drops are tracked with a predictive tracking algorithm using Kalman filtering method

For each ID, detection

we may have various information.

This information for ID is processed to identify events.

 4π Area

Perimeter²

For identifying collision and fragmentation constraints on

- Change in Area $\frac{dA}{A}$
- Velocity Jump $\frac{dV_{mag}}{V_{mag}}$
- Compactness C=

Synthetic Data for Validation

IRSN

INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Fragmentation Results

Primary and Secondary fragmentation results:

- Square Symbol for secondary fragmentation
- Star for Primary Fragmentation
- Blue for size 20- 100 pix.
- Black for size 100- 500 pix
- Green for size 500- 1000 pix
 Magenta for size 1000- 5000 pix
 Red for size 5000 pix and above

Horizontal axis represents pixels in radial direction and vertical axis represents pixels in axial direction

IRSN

Collision results

(d) D3V1

Fragmentation vs. Collision

Fragmentation are ten time more frequent than collision

Submitted to experiments in Fluids...

IRSIN INSTITUT DE RADIOPROTECTION ET DE SORETÉ NUCLÉARE

2 Eulerian Analysis and Instability Identification

16

IRSN

INSTITUT DE RADIOPROTECTION FT DE SÛRETÉ NUCLÉAIRI

.00.00

List of Instabilities

Planar Kelvin-Helmholtz (1871)

$$\frac{R_0}{\lambda_{KH,\max}} = \frac{1}{1 + \rho_R^{-1}} \frac{We}{12\pi}$$

Weber (1931)

$$\sigma^{2} + \sigma \frac{3\mu_{L}k^{2}}{\rho_{L}R_{0}^{2}} = \frac{\gamma}{2\rho_{L}R_{0}^{3}} \left(1 - k^{2}\right)k^{2} + \frac{\rho_{C}}{\rho_{L}}\frac{U}{2R_{0}^{2}}k^{3}\frac{K_{0}(k)}{K_{1}(k)}$$

• Reitz (1987)
$$\frac{\lambda}{R_0} = 9.02 \frac{\left(1 + 0.45Oh^{0.5}\right) \left(1 + 0.4T^{0.7}\right)}{\left(1 + 0.87We_C^{1.67}\right)^{0.6}} \qquad T = Oh\sqrt{We_C}$$

• Entov-Yarin (1984)
$$k_{EY,\max} = \left(\frac{8}{9} \frac{\rho_L R_0^2}{{\mu_L}^2} \left(\rho_C U_0^2 - \frac{\gamma}{R_0}\right)\right)^{1/6}$$

INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Eulerian Analysis

- Cargille fluid
 - D_j= 1mm
 - U=1.91 m/s
- Focus on the edge of the cross section of the jet
 - Spatial resolution: 22.1 µm/pixel
 - Frame rate: 14000fps

NIVERSITÉ E lorraine

Analysis on Temporal frequency

- A sample region of 10*10 pixels is selected
- A Wavelet analysis is done for 1000 frames
- The result shows a fairly stable temporal frequency

IRSN

Analysis on Spatial frequency

- A sample region of 20*900 pixels is selected
- A Wavelet analysis is done on spatial frequency for 300 frames

22 Dynamic Mode Decomposition

Data Driven Method

 Similar to POD (Proper Orthogonal Decomposition)

D = A/B C

Source: P. Schmidt

UNIVERSITÉ De lorraine

Results of DMD analysis

IRSN

DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

2	Δ	
Ζ	4	

Modes with positive growth rates are extracted:

M	ode	Growth Rate (s-1)	Amplitude	Frequency (Hz)
	41	41.6	109	4846
	61	46.5	65	2076
	67	24.4	61	1099
	71	40.7	57	3505
	75	27.6	55	629
	93	46.8	37	5809
	99	0.8	34	8718
ו	13	69.6	26	4311
1	17	58.5	25	10921
1	21	52.2	24	8341

DMD Analysis (3)

- Intensity map of different modes are extracted
- A Fourier transform is done for the centerline
- The non dimensional spatial wavenumber and wavelength can be found

Mode: 41 growth rate: 41.6 amplitude: 109 frequency: 21

IRSN

DE RADIOPROTECTION ET DE SÜRETÉ NUCLÉAIRI

DMD Analysis (4)

Comparing instability with the result from DMD

• The Weber instability model and Entov-Yarin instability model fits best with this result

Conclusion

- Fragmentation dominates over collision
- Instability mechanisms are the root
 - Weber Instability and Entov-Yarin Bending Instability
 - Other atomizer, other instability

Thanks for your attention!

IRSN

INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

