

Experimental study of water-in-oil droplet micro-explosion using LIF measurements : effect of radiative heating configuration







T. Naudin <sup>(1,2)</sup>, D.Tarlet<sup>(1)</sup>, R. Calabria<sup>(2)</sup>, P.Massoli<sup>(2)</sup>, J.Bellettre<sup>(1)</sup> <sup>(1)</sup>LTeN – Nantes University, Nantes, France <sup>(2)</sup>STEMS-CNR – Napoli, Italy

### **PRESENTATION CONTENTS**

- Introduction & context of the study
  - Water-in-oil emulsions and its effect on combustion
  - Aim of the study
- Material & methods
  - Experimental bench presentation
  - Laser Induced Fluorescence technique for visualization
- Results
  - Effect of Emulsion Mean Diameter on coalescence rate
  - Impact of radiative heating
  - Natural convective motion of the water subdroplets

## Conclusion & discussion





## **INTRODUCTION & CONTEXT OF THE STUDY**



[1]Masharuddin et al., Alexandria Engineering Journal vol. 61, 2022

#### Micro-explosion :



(a) non-optimal micro-explosion (puffing)



#### (b) Optimal micro-explosion





particules)

Micro-explosion

**Results from difference in** vaporization temperature between Water and Oily

Shows a stochastic behavior

Enhance Air/Fuel mixing

phenomenon :

Phase

## **INTRODUCTION & CONTEXT OF THE STUDY**

Introduction & context of the Study

Material & methods

Results

Conclusion & discussion

Parameters governing the occurrence of micro-explosion :

• Size of the dispersed (water droplets) phase:

**Coarse Emulsion** → fast coalescence and high microexplosion rate and intensity

Fine emulsion → more stable (low coalescence rate, weak micro-explosion (puffing)

- Composition (% of water and Surfactant)
- Heating Type (conductive, convective or radiant)

## **Coalescence is a fondamental process for the obtention of micro-explosion**

#### Objectives of the study :

- Understanding better the «life» of the water embedded droplets during the heating phase → natural internal convection
- Investigate the effect of IR radiant heating on emulsion atomization





example of coalesced water droplet within an emulsion



Require non-intrusive methods (optical diagnostics)

Observation of the water droplets embedded within the Emulsion droplets:

• Require the use of Laser Induced Fluorescence technique

Working process of LIF technique :

• Water phase mixed with fluorescent dye only soluble in water

Here Fluorescein Sodium Salt (highly soluble in water, absorption spectrum corresponding to the laser wavelength )



#### Example of LIF setup for water phase visualization



Absorption and Emission spectrum of Fluorescein sodium salt





LABORATOIRE

ET ÉNERGIE DE NANTES







ET ÉNERGIE DE NANTES



#### **Calibration of the Heat Flux for pure n-tetradecane**





-Radiative and conductive heat fluxes

-Convective and radiative heat flux

Top heat source :

Bottom heat source :



• Best Fitting betweeen 700°C TOP and 430°C BOTTOM

•

ET ÉNERGIE DE NANTES

Limitation : performed for pure n-tetradecane (optical properties ≠ of emulsion)







- Coarse emulsion ——> strong coalescence rate
  - → high micro-explosion %
- Fine emulsion —— low coalescence rate

almost no micro-explosion. water droplet undergo high internal convective motion







Introduction & Material & methods Results Conclusion & discussion

#### Internal convection in the case of fine emulsion



• For top configuration, auto-focusing of radiation involved



GDR Transferts et interfaces, Aussois, 7-9 juin 2022

Consiglio Nazionale delle Ricerche

Istituto di Scienze e Tecnologie per l'En



## Simplified model for radiation in the emulsion droplet

#### Mains hypothesis :

LABORATOIRE DE

**ET ÉNERGIE DE NANTES** 

- Typical model for solid and bulks liquids
- Optical properties (refractive index, taken at constant temperature)

$$A = 1 - \rho \left( 1 + \frac{(1-\rho)^2 \tau^2}{1-\rho^2 \tau^2} \right) - \frac{(1-\rho)^2 \tau}{1-\rho^2 \tau^2} \quad \text{absorptivity}$$
$$\tau = e^{-\kappa d} \quad \text{transmission coefficient}$$
$$\rho = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2} \quad \text{Reflection coefficient}$$

- Single water droplet located in the center of the emulsion droplet
- n-octane instead of n-tetradecane







Introduction & context of the Study

Material & methods

Results

Conclusion & discussion

### Contribution of the different modes of heat transfer

- Conductive, convective and radiant fluxes are calculated for the two panels configurations
- The time-independant model is assumed
- For the bottom panel config., radiant and convective fluxes are of the same order or magnitude
- For the top panel config., radiant heat flux is higher (because T=700°C with respect to 430°C in bottom config.)







## Analyze of the internal convective motion of the water droplets

ET ÉNERGIE DE NANTES

- Particle-Tracking Velocimetry Algorithm is used for trajectories measurement
- This measurement has been possible due to the LIF that allows to get water droplets centers and radii for each pictures analyzed
- Natural convection observed for fine emulsions only (small MD and low coalescence rate)



## **CONCLUSION & DISCUSSION**



#### Conclusion and perspectives

- Laser Induced Fluorescence technique has been used in order to investigated dispersed water droplet behavior during heating phase of emulsion
- Coalescence of water droplets is an influent parameter in order to obtain micro-explosion
- For fine dispersed water droplets, internal convection has been observed, with dependance on the heating source location and type (radiative or radiative + convective).
- Internal convection **does not promote coalescence**

Next steps of the investigation :

- More accurate model for analysis of radiation absorption (Lorenz-Mie theory, Optical Geometry theory or Coated Sphere theory...)
- two-colors LIF technique : obtaining temperature field within the emulsion droplet.



[2] Moussa et al., Experimental Thermal and Fluid Science vol. 116, 2020





### **CONCLUSION & DISCUSSION**



# Thank you for your attention

The authors thank the Region Pays de la Loire (Chaire ConnectTalent ODE) for the financial suppot









Introduction & context of the Study

**Material & methods** 

Results

Conclusion & discussion

## Droplets detection for size and trajectories measurements



- Droplets center position and size measured with image posttreatement
- Particle Tracking Velocimetry algorithm is used for trajectories and velocity measurements



