

Film and rivulet flow through and around perforations

Lionel Vincent & Hervé Duval (LGPM), Mikaël Wattiau (AL)

Goal : improve process efficiency by enhancing liquide/gaz transfer

Experimental setup

Overview

Experimental proxy: single perforation on a flat plate with variable θ

Our focus: interaction of **liquid phase** with perforation

 $\operatorname{Re} \approx 106 \, q [\mathrm{m}^3/\mathrm{m.\,h}] \approx 1.18 \, Q [\mathrm{L/h}]$

Literature: flow over perforation ORITLIQUIDE

Xie H.; Hu J.; Wang C.; Dai G., Liquid flow transition and confined free film formation on a vertical plate with an open window, *Exp Therm Fluid Sci* (2018).

Iyer et al., Experimental study of a liquid film flowing over a perforation. AIChE Journal (2021).

lyer *et al.*, A comprehensive study of the liquid transfer from the front to the back of a vertical perforated sheet. *AIChE Journal* (2022).

Flow over/through hole: rim or curtain? OAirLiquide

Film thickness: spectral landscape **O**AirLiquide

Film thickness: spectral landscape **O**Air Liquide Front side, 2 mm above hole

Film thickness: spectral landscape **O Air Liquide** Front side, 2 mm above hole

Periodic forcing

GDR Transinter, Aussois, juin 2022

General wave behavior (away from hole) OAir Liquide

General wave behavior

(setup #1)

Direct flow (no forcing)

50

60

GDR Transinter, Aussois, juin 2022

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

0

Dower 0.5

ē

GDR Transinter, Aussois, juin 2022

Wave growth *over* hole

BACK, 4 mm above hole, Q = 22 L/h

Small forcing amplitude

FRONT, 2 mm *below* hole, Q = 22 L/h

Small forcing amplitude

BACK, 4 mm above hole, Q = 22 L/h

Large forcing amplitude

FRONT, 2 mm *below* hole, Q = 22 L/h

Wave <> hole interaction

Q = 13.4 L/h, f \approx 23 Hz

Q = 21.8 L/h, f \approx 23 Hz

Rivulet flow

🖸 Air Liquide

Flow rate transferred to rivulet

vertical plate ($\theta = 0$)

Flow rate transferred to rivulet

Negative inclinations ($\theta < 0$): gravity hinders transfer

Air Liquide

Flow rate transferred to rivulet

• Air Liquide

Negative inclinations ($\theta < 0$): gravity hinders transfer

Flow rate transferred to rivulet

• Air Liquide

Negative inclinations ($\theta > 0$): gravity favors transfer

Rivulet spreading and flattening

 $\theta < 0$: Rivulet spreading **on top** of plate

θ = -20°
Re = <mark>26</mark>

Rivulet spreading and flattening

$\theta < 0$: Rivulet spreading **on top** of plate

Rivulet spreading and flattening

 $\theta > 0$: Rivulet spreading on **undersurface** of plate

Wave train characterisation via high-speed videography

Space-time diagram

Raw movie

Background subtraction & median line extraction

Wave train characterisation

Space-time diagram

Wave train characterisation

Typical unstable case (Q = 36.3 L/h)

Wave train characterisation

Typical stable case (Q = 17.5 L/h)

Rivulet neutral stability curve OAirLiquide

Take-home message(s)

Air Liquide

30

Rim <> curtain transition independant of θ

Rivulet stability

Ongoing work

lyer et al., AIChE (2022)

sources

obstacles

Thank you !

GDR Transinter, Aussois, juin 2022

Backup slides

Speaker bandwidth test

Membrane oscillation amplitude

Cross-flow film thickness profile (flat plate)

q = 21.1 L/h

Cross-flow film thickness profile (flat plate)

q = 21.1 L/h

Wave train characterisation **O**AirLiquide

Some industrial packings

RMP N250Y structured packing with smooth surface

RMP N250Y structured packing with textured surface

RMP N250Y structured packing with perorated and textured surface