

Focus sur les activités liées au givrage

Mehdi STITI, Kaoutar TALEB, <u>Alexandre LABERGUE et Guillaume CASTANET</u>

Université de Lorraine, CNRS, LEMTA, Nancy, France

GDR TRANSINTER, Aussois juin 2023

Introduction et positionement

<u>Probléme n°1</u>: *givrage* Solidification de gouttes sur paroi sous-refroidies

Projet NUAGE (ANR/ASTRID; 2015-2019)
Thèse de M. Stiti (novembre 2020)

Probléme n°2: dé/anti-givrage Systèmes de protection

Projet VERGLAS (ANR/ASTRID; 2021-2024)
Thèse de K. Taleb (début oct. 2022)

Introduction et positionement

Probléme n°1:

givrage

Solidification de gouttes sur paroi sous-refroidies <u>Objectif</u> : Caractériser l'évolution du front de solidification à l'intérieur d'une goutte

Probléme n°2: dé/anti-givrage Systèmes de protection

<u>Objectif</u> :

Caractériser les transferts de chaleur et de masse mettant en œuvre un actionneur plasma

Introduction et positionement

Probléme n°1:

givrage

Solidification de gouttes sur paroi sous-refroidies

Probléme n°2:

dé/anti-givrage Systèmes de protection <u>Méthode</u> : Développement de diagnostiques optiques pour accéder :

- Changement de phase solide/liquide
- Température phase liquide (et solide?)
- Flux de chaleur pariétaux

⇒ Techniques de fluorescence Induite (LIF) par Laser et de thermographie IR (TIR)

PARTIE 1

Evolution du front de solidification d'une goutte par Fluorescence Induite par Laser

Accès au contour externe du front ou tri-jonction *liquide/solide/air*

Cellule de Hel-Shaw

Marin et al. Physical Review Letters, 2014

Front sphérique mais technique intrusive

⇒ Nécessité de la mise en place d'une métrologie non intrusive permettant de mesurer l'évolution de la <u>géométrie</u> du front de solidification <u>à l'intérieur</u> d'une goutte

Utilisation de l'imagerie LIF (PLIF)

Signal de fluorescent proportionnel au volume de liquide éclairé <u>et</u> glace émet très peu de signal (*Stiti et al, Exp. In Fluids, 2019*)

 $I_f(r,t) = K_{opt} \phi \epsilon c I_0(x,y) V_L$

⇒ Application de la PLIF au changement de phase liquide/solide

Utilisation de l'imagerie LIF (PLIF)

Signal de fluorescence (caméra rapide LIF):

 $\blacksquare I_f(r,t) = K_{opt} \phi \epsilon c I_0(x,y) Z_L(r,t)$

Ombroscopie (seconde caméra rapide):

 $\square Z_G(r,t)$

$$Z_i(r,t) = Z_g(r,t) - Z_L(r,t)$$

Prise en compte de la dilatation

Dispositif expérimental

Exemples typiques d'images PLIF

Ombroscopie

Contour de la goutte avant solidification; diamètre d'étalement max.

Traitement des images PLIF

Etude numérique

Résolution 2D du problème de Stefan à deux phases

Fonction de caractéristique :

Limitations :

- Pas de phase mixte \rightarrow pas de 0 < μ <1
- Dilatation volumique non modélisée

Exemples de résultats

Comparaison N-BK7/Duraluminium

Impact sur du verre N-BK7 Mauvais conducteur de la chaleur

Impact sur du duralium Bon conducteur de la chaleur

PARTIE 1

Etude des mécanismes de conversion électrothermique d'un actionneur plasma pour le contrôle du givrage

Objectif du projet VERGLAS

Développement d'un nouveau système de protection contre les risques de givrage en associant deux méthodes/systèmes

i- Actionneur plasma de type Décharge à Barrière Diélectrique (DBD) → *sources de chaleur*

ii- Structuration de surface pour limiter accrétion de glace

⇒ Nécessité d'identifier et caractériser les différents transferts de chaleur et de masse mis en jeux

Principe de l'actionneur DBD

Objectif du projet VERGLAS

Développement d'un nouveau système de protection contre les risques de givrage en associant deux méthodes/systèmes

i- Actionneur plasma de type Décharge à Barrière Diélectrique (DBD) → *sources de chaleur*

ii- Structuration de surface pour limiter accrétion de glace

⇒ Nécessité d'identifier et caractériser les différents transferts de chaleur et de masse mis en jeux

Principe de l'actionneur DBD

Jinsheng C. et al., Exp Fluids (2017)

Première étape du projet

- Expérience de référence avec surface diélectrique non structurée
- Mode dégivrage → goutte déposée et préalablement solidifiée

<u>Techniques de mesures mis en œuvre</u>

- Température phase liquide par thermométrie par LIF2c2d :
 - (1) à l'interface goutte/diélectrique $T_{q,i} \Rightarrow$ vue de dessous à travers le diélectrique
 - (2) Ou sur l'épaisseur de la goutte $T_g \Rightarrow$ vue de côté
- Flux total à l'interface du diélectrique par $\varphi_{p,d} + \varphi_{g,d}$ par TIR

Focus sur la LIF2c2d vue de dessous

Principe de la thermométrie par LIF2c2d

$$I_f = K_{opt} K_{spec} I_0 c V e^{sT}$$

s: sensibilité en température en %/°C

Colorant 1 (Rh123) et Bande 1, $\Delta \lambda 1$ $I_{f1} = K_{opt1} K_{spec1} I_0 c_1 V e^{s_1 T}$ Colorant 2 (KR) et Bande 2, $\Delta \lambda 2$ $I_{f2} = K_{opt2} K_{spec2} I_0 c_2 V e^{s_2 T}$

Dispositif expérimental

Premiers résultats

• Vue de dessous, *ie* à travers le substrat

Premiers résultats

- Vue de dessus, ie à travers le substrat
- $T_{amb} = -21,8^{\circ}C$

Premiers développements anti-givrage PLIF rapide vue de côté

Premiers résultats

Parois chauffée à 400°C

0 😂

0

10 temps (s) 15

5

CONCLUSION Partie 2

Amélioration conditions expérimentales

- Reproductibilité
- Nombre d'essais par jours

□ Amélioration et validation de la chaine PLIF

- Détection début changement de phase
- Incertitude origine (phase?) signal de fluorescence collecté
- Intégration technique IRT
 - Gamme spectrale [7.7 9.5 μm]
 - Accès optiques et diélectrique DBD transparent dans cette gamme (ZnSe)
 - Dépôt « opaque » sur interface compatible avec plasma (Teflon)

Essais sur des surfaces structurées