X-ray visualized interfaces in high-speed sprays

<u>Nathanaël Machicoane</u>¹, Oliver Tolfts¹, and Alexander Rack²

¹Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France ²ESRF - The European Synchrotron, 38000 Grenoble, France

nathanael.machicoane@univ-grenoble-alpes.fr

cnrs

- o Liquid-gas flows are critical in engineering process innovation and intensification
- o Liquid sprays are critical for combustion systems, manufacturing, heat management, chemical processing, painting, e. g.:
 - Liquid fuel sprays
 - > Liquid metal atomization
 - Spray cooling and coating
 - > Pharmaceutical, food, consumer products
 - > Fire safety
 - > Ship wake and sea spray

Gas-assisted Atomization Phenomena

FLAPPING

Cryogenic, Locke at al. 2010

- Frequency well modeled (Delon et al., 2018)
- Flapping affects the cascade of mechanisms, up to droplet spatiotemporal distributions
- Dimensionality and role of swirl

Effect for high-speed sprays

Experimental setup

$$Q_{Total} = Q_{SW} + Q_{NS} = cst$$

Nathanaël Machicoane - Réunion du GdR TRANSINTER - 26 au 28 juin 2023

Synchrotron X-ray high-speed imaging

Ē

Intact core

 $Re_{l} = 800$

0

0.5

1.5

2

-0.5

 x/d_l

 $We_g = 45$

 $0.00 \mathrm{\ ms}$

Ļ

Machicoane et al., IJMF 2019

0.5

0

 y/d_l

CNI

Ē

Transition between intact liquid core and crown

Ē

ANKA Phase: from intensity to liquid thickness

Ē

4

3

2

0

 10^{4}

Flux (photons/s)

CNrs

ANKA Phase: from intensity to liquid thickness

Weitkamp et al., J. of Synchrotron Radiation 2011

 \rightarrow Calibrate for the coefficient α and β (non-monochromatic, spatial and temporal inhomogeneities...)

 $\Rightarrow \alpha = 0.91 \text{ mm}^{-1} \text{ and } \beta = 1.12 \min_{x}(\phi) \text{ for what follows}$

Measurement uncertainties

Limitations of the uncertainties' evaluation

- Nozzle glare (ANKA Phase is for a single material)
- Interference patterns due to X-ray scattering by interfaces limit the probing of small radius values
- → For $x > \frac{D_l}{10}$ and for EPL > 1 mm, approximately 10% accuracy (~ 20% for smaller thicknesses?)

Transverse center of mass of the liquid core

Center of mass along y

-0.5

-1

0.5

0

 y/d_l

Temporal dynamics of the unstable crown and role of swirl

Temporal dynamic of the unstable crown

 10^{-4}

 10^{-6}

 10^{-8}

 10^{-10}

 10^{-12}

 10^{0}

А

E(f)

$$e_l = 800 \qquad We_g = 950$$

- Strong periodicity signature with swirl
- Mean residence time on the side is twice the oscillation period
- Without swirl, onset of a slow dynamic which would required longer acquisition to investigate
- Decorrelation of the liquid core center of mass is orders of magnitude slower than that of the liquid core length

- o Proposed a method to retrieve liquid path using X-ray
- o At higher We_g , liquid core undergoes transitions, up to unstable crown, even without gas swirl
 - > Intact liquid core
 - > Transitional liquid core
 - Liquid crown
 - > Unstable liquid crown
- o Gas swirl leads to
 - > Earlier onset of unstable crown (i.e. at lower We_{g})
 - Much more frequent motions of the gas recirculation
 - Similar PDF for center of mass
- Open questions
 - > Regime map (Re_l, We_g, SR)
 - Characteristic frequency of the liquid core motions with and without swirl

(see Kaczmarek et al., IJMF 2022 for flapping and role of swirl at lower We_g)