

Problèmes aux interfaces pour la problématique de l'Interaction Corium Béton

R. Chauvin & N Seiler CEA/DES/IRESNE

GdR TRANSINTER 2023

Exposé

1. Problématique Interaction Corium Béton

 \rightarrow Deux types d'interfaces complexes

2. Interface Corium / Béton

- Problématique
- R&D au CEA

3. Interface Supérieure – avec ou sans renoyage

- Problématique
- R&D au CEA

4. Conclusion

Problématique Interaction Corium Béton & Interface

Contexte :

Interaction Corium Béton – en cas de rupture de la cuve

Caractéristiques :

- Phase oxyde & Phase métallique non miscibles (bain homogène ou stratifié)
- Puissance résiduelle ~ MW- 20MW
- ~40 120 tonnes
- Surface 100 m², hauteur 30 cm
- T ~ 2000K
- Différents types de béton selon les centrales (siliceux, silico-calcaire, calcaire)
- Dégazage du béton lors de l'ablation
- Vitesse d'ablation (~cm/h)
- Fonte : *béton-1200K, ... UO*₂-ZrO₂, CaO– 2800K

Schéma d'un accident grave avec percement de la cuve

Thématique qui soulève encore beaucoup de questions

- Prolongement de vie de Parc,
- Durée d'interaction longue → Fukushima (10 jours sans renoyage, puis renoyage eau de mer),

Fukushima unit 1–Cibula et al., FDR 2022

Fig. 6 Degradation of concrete in the vicinity of the pedestal opening (right wall of the opening)

GdR TRANSINTER-2023

[•]

Essais VULCANO – CEA – Ch Journeau et al.

- Interface corium / béton: ablation, possible coûte instable, de composition évoluant avec
 l'incorporation du béton. Siège de transfert de chaleur, de masse, de composés (thermochimie),
- Interface supérieure (avec ou sous renoyage): rayonnement ou évaporation intense (renoyage type quenching), dépendant de l'état de surface de la croûte.

Problématique traitée depuis de nombreuses années à l'échelle macroscopique:

- De nombreuses expériences,
- Des collaborations à l'échelle internationales,

Principales conclusions:

- Evaluation de flux et coefficients d'échange de chaleur globaux ~100W/m²/K
- Influence du transport des composants du béton dans la bain (viscosité, diffusivité)
- Influence complexe du gaz issu du dégazage du béton – pas de consensus sur l'apport de la convection due au gaz
- Influence du type de béton sur l'anisotropie de l'ablation (composition du béton et des agrégats)

_	
2	GdR TRANSINTER–2023

Table 1	
List of 2D MCCL experiments with rea	materials versus concrete type

Concrete properties	F concrete (siliceous)	G concrete (LCS)	C concrete clinker	Haematite concrete	Mortar with silica
Related experiments	VB-U4, U5 (Journeau et al., 2009), CCI3 (Farmer et al., 2007), CCI5, CCI6 (Farmer	VB-U6 (Journeau et al., 2009), CCI2 (Farmer et al., 2007), CCI4 (Farmer	VB-ES-U2 (Journeau	VB-U7 (Journeau et al.,	VB-ES-U3 (Journeau et al.,
	et al., 2010)	et al., 2010)	et al., 2012a)	2012a)	2012a)
Ablation	Anisotropic	More or less isotropic	Anisotropic	Anisotropic	Too low ablation
Produced gas (moles/ concrete litre)	Low: 8 mol/l	High: 19 mol/l	Inter-mediate: 13 mol/l	Low: 6 mol/l	Intermediate: 12 mol/l
Aggregate disintegration	Quartz at 2200 K /mortar at lower temp.	Gravels destroyed at 1100 K	Clinker intact at ablation temp.	Aggregates intact at ablation temp.	No large aggregates
Concrete shrinking	No shrinking	Shrinking by 30% of limestone gravels	No shrinking	No shrinking	No shrinking
Concrete melting	Liquidus 2000 K	Liquidus 2300 K eutectic valley	~G concrete	Low liquidus	~F liquidus ~2000 K; no eutectic valley
Transport properties of molten concrete	Viscous low diffusion	Fluid high diffusion	Fluid high diffusion	Inter-mediate	Viscous low diffusion

Cranga et al., Annals of Nuclear Energy 74 (2014) 72-88

- SWICCS test ANL (Lomperski & Farmer, NED 237, 2007) effet de la pression, du type de béton, flux de chaleur mesurés élevés
- ROSAU-DCAM ANL en cours 5 tests suite aux essais SWICCS)
- MOCKA KIT (Gaus-Liu et al., 2022) effet des barres d'acier, pression
- MERELAVA CEA en cours avec chauffage inductifs et corium oxyde/métal 4 tests

7

Problématique traitée depuis de nombreuses années à l'échelle macroscopique:

Principales conclusions:

Formation d'une croûte sur la surface supérieure & sur l'interface corium/béton → croûte instable non réellement observée sur les expériences (malheureusement résultat post-mortem)

- Cas d'un béton calcaire ou silico calcaire (SiO2/CaO< 1): grande quantité de gaz formés (CO₂, H₂O) → éjection de corium qui peuvent former des lits de débris sur la surface supérieure en présence de croûte : principal facteur de refroidissement
- Cas d'un béton siliceux (SiO2/CaO>3): peu de gaz et d'éjection de corium, refroidissement Influence du transport des composants du béton dans la bain (viscosité, diffusivité) assez faible → importance du refroidissement par le haut si renoyage: water ingression ou imbibition (eau pénètre dans la croûte fracturée)

+ Travaux de remontée d'échelle : Études CFD pour les coefficients d'échanges (ex: Jahn 1975) → corrélation à l'échelle macroscopique / Validée sur les expériences macroscopiques:

Outils de simulation macroscopique (0D)

Interface Corium /Béton

Différentes approches pour la modélisation macroscopique de l'interface corium/béton:

Modèle fortement dépendant de:

 Température d'interface (Tliquidus ou Tsolidus ou entre)

- Conductivité de la croûte, (C_{melt} (Tsolidus))
- Coefficient d'échanges de chaleur imposés

Différentes approches pour la modélisation macroscopique de l'interface corium/béton:

Ajout de la physique dans l'equilibrium crust modèle de Tolbiac-ICB → **Temperature Interface Model** (Seiler et Combeau, 2014).

Solide accumulé à l'interface de compositions (zone pâteuse → couche dense),
 Nombreuses hypothèses; pas d'accumulation dans la zone pâteuse,

- Considère une compétition entre transfert de masse et transfert de chaleur
- Caractéristiques de l'interface modifiées
 - ✓ Concentration de béton/bain [kg/kg] $C_{int} =$
 - ✓ Température = $𝔅 (C^{int})$

$$= C_{liq,pool} + \frac{1}{1 + \frac{k_M}{J_{abl}}} (C_w - C_{liq})$$

Modèle macroscopique avec une constante ajustée (modélisation du transfert de masse)

Existe des modélisations 3D CFD de type suivi d'interface (front tracking code CARFT (Morita et al., 2021)

Mais on ne connait pas la phénoménologie de dégradation du corium à cette interface

2 GdR TRANSINTER-2023

Approche locale et mécaniste pour comprendre la physique de cette interface : ANR IMMOC

Interaction of molten metals/oxides with concretes (IMMOC)

agence nationale de la recherche

Expected impacts

12

RÉPUBLIQUE FRANÇAISE

Reference experiments.

Help the understanding of concrete damaging under extreme conditions.

Intrumental developments fort real time in situ analysis of degradation kinetics.

New mechanisms of heat propagation in heterogeneous media.

Nuclear installation safety.

Partenaires:

- AMU-CNRS: MADIREL (M. Antoni)
- **AMU-CNRS: CEREGE** (D. Borschneck)
- **PROMES**: L. Charpentier
- ENPC-UGE-CNRS Labo Navier: C. Chateau

→ Caractérisation du béton à très haut flux/ température / fissuration / désagrégation

anr

Mais aussi, par le passé : Simulations CFD pour étudier la compétition convection/transferts chaleur bain oxyde/métal et les effet inductif (cf plus loin) pour être représentatifs de la réalité.

Interaction of molten metals/oxides with concretes (IMMOC)

RÉPUBLIQUE FRANÇAISE Liberti Equint Frateculti

5 tasks

(Instrumental developments	Sample preparation	Experiments	Analysis & characterizatio	Modelling		
	Load	(c) (c) (c) (c) (c) (c) (c) (c)			25 cm		
	Control of heat flux and oxidation kinetics	Cylindrical concrete blocs (100 to 270 cm ³) Lime-Siliceous concretes Siliceous concretes Basaltic concretes	Samples under extreme heat flux (up to few MW/m ²). → post mortem analysis	X-Ray imaging tomography Nanoidentation Mecury porosimetry	Multiscale poroelastic models CFD Simulation		
		Formulation tuned to prevent unbalanced effects (unsuitable granulometry, etc)	Samples under moderate heat flux → real time in situ analysis	Gas adsorption	Essentially exploratory		
		Essais sans c	harge \rightarrow T _{décomposition}	béton			
ea	$_{GdR TRANSINTER-2023}$ Essais avec charge \rightarrow phénoménologie locale de l'ablation						

14

WP5.2 IMMOC – exploratoire - Simulation & Modèles

Objectif : Nouveaux modèles & Techniques numériques

Outil de R&D: le code CIMAC (S. Semenov, J.-F. Haquet, P. Piluso, M. Antoni)

- Navier-Stokes incompressible triphase
- Phases non miscibles
- Fonction « couleur » pour advection de la masse
- Reconstruction d'interface VOF-PLIC
- 1 équation de quantité de mouvement
- 1 pression
- Transferts de chaleur
- · Forces de tension superficielle
- 2D→ 3D
- Pas de thermochimie
- Pas de thermomécanique

WP5.2 IMMOC – exploratoire - Simulation & Modèles

WP5.2 IMMOC – exploratoire - Simulation & Modèles

Modélisation interface corium/béton

- Béton = 4^{ème} phase (propriétés renseignées par les autres WPs)
- · Traitement de l'interface corium/béton :
 - ✓ Suivi de l'interface corium/béton avec transferts de masse
 - ✓ Bilan d'énergie & Transferts de chaleur

Résultats validés sur les tests expérimentaux des autres WPs:

- Front d'ablation
- Distribution finale des phases
- → Effet du type de béton sur l'anisotropie (résultats des autres WP sur sa dégradation)

22 GdR TRANSINTER-2023

Figure 8 <u>:</u> left: Basaltic concrete (VF-U1) post-test repartition of the oxidic and metallic phases. Right : 2D CFD simulation of a corium.

Interface Supérieure

L'échelle macroscopique:

2 principaux modèles:

- Lomperski and Farmer (2006) → paramétrique
- Epstein and Lister (1974, 1999, 2006) (+ Yeo et al. (2019)) → analytique
 ✓ Approche quasi-permanente,
 - ✓ Flux de chaleur extrait d'un milieu poreux de faible perméabilité (~10⁻⁹ m²) à Patmo→ loi de Darcy, Écoulement eau/vapeur contre-courant (CCFL)
 - ✓ Perméabilité du solide fissuré (Lister)→ 1D réseau polygonal de fissures se propageant dans une roche chaude,

SSWICS-3 (Lomperski and Farmer, NED 237, 2017)

$$\varphi_{imbi} = \left(\frac{h_{LV}(\rho_l - \rho_v)g}{\nu_v}\right)^{5/13} \left[\psi \frac{\alpha_{crs}^2 \rho_{crs}^2 (C_{p,crs}(T_{sol} - T_{sat}) + L)^2}{(T_{sol} - T_{cr}) + \frac{L}{C_{p,c}}}\right]^{4/13} \left(\alpha_T (T_{cr} - T_{sat})\right)^{15/13}$$

- Des paramètres influents mal connus : température de solidification, coefficient d'expansion thermique de la croûte de composition mal connue
- Une constante ajustable

Original Solidification z = 0 z

Epstein (2006)

Evaluation analytique 1D \rightarrow **amélioration du flux** d'imbibition

Illustration du phénomène de water ingression lié à la pénétration de l'eau dans les fissures qui se propagent dans la croûte supérieure du bain de corium et la modélisation 0D réalisée en support à l'amélioration des modèles de TOLBIAC-ICB.

Modèle $1D \rightarrow$ modification des coefficients du modèle à partir des essais et différents types de bétons.

ANR MIT3BAR : Renoyage par le HAUT dans l'installation PLINIUS/MERELAVA CHANGER L'ÉNERGIE EN

4 essais :

- 1^{er} Identique à SWICCS
- Différents types de béton (calcaire/ silicieux)

Corium (70-40 kg)

- Incorporation de béton (max 13.6 %) dans le corium •
- Incorporation d'acier (max 15.1%) dans le corium ٠
- Chauffage par induction 400 kW [70-300 kHz] Injection par le haut ~8 l/min

Impact de la présence de fer, béton sur le flux d'imbibition ?

framatome

ME-U3

ME-U2

FOCUS sur l'expérience MERELAVA réalisée le 22/03/2023

...

Découvrir Personnes LinkedIn Learning

Post de CEA IRESNE

[#Réussite #Essai #Corium] Première expérience de #renoyage dans l'installation #MERELAVA entre un #corium oxydes - métal et du #béton avec #puissance #résiduelle simulée, pour l'étude des #accidents #graves.

Un renoyage de corium (amas de combustible et métaux issus de la #fusion du #cœur du réacteur) avec ablation de béton a été réalisé avec succès par nos équipes dans le dispositif #MERELAVA de la plateforme accidents graves #PLINIUS sur le site de #Cadarache, mercredi 22 mars 2023.

Cette expérience fait partie d'un #projet de recherche financé par le Programme Investissements d'Avenir (#PIA), dans le cadre de l'action « Recherche en matière de Súreté Nucléaire et de Radioprotection (#RSNR) » gérée par l'ANR (Agence nationale de la recherche).

MERELAVA, développé par les équipes du Laboratoire d'Étude des accidents Graves #LEAG du Département de technologie nucléaire de notre institut, permet la réalisation d'#expériences sur le #refroidissement du #corium par injection d'#eau par le haut.
 La fusion du corium est obtenue par réaction #thermitique (réaction d'oxydoréduction auto-propagée et fortement exothermique). Le corium fondu, contenu dans un creuset en zircone, est instrumenté avec des #mesures de #température par thermocouples. Une fois la fusion obtenue et après une première ablation du béton, un système de #chauffage par #induction autour du dispositif a été utilisé pour simuler la puissance résiduelle pendant les séquences de refroidissement par renoyage.

C'était la première fois qu'une expérience d'interaction corium / béton sous eau avec un #mélange #prototypique (UO2+ZrO2+métal) était réalisée et qu'un système de chauffage, par induction, était utilisé dans MERELAVA.

 Fravo aux équipes pour cette première expérience réussie !
 Viviane Bouyer Christophe Journeau Andrea Bachrata Arthur DENOIX Jules Delacroix Pascal PILUSO Hugo Laffolley.
 Alexia BALLAND LONGEAU caroline TRUFFIER Philippe Fouqeras.

45' d'interaction corium (oxide-métal)/béton avec renoyage par >50 L d'eau et simulation de la puissance radioactive résiduelle

https://www.linkedin.com/posts/cea-iresne_premier-essai-dansmerelava-de-renoyage-de-activity-7046388094295552001-Ku_Y?utm_source=share&utm_medium=member_desktop

Conclusion:

La physique de l'ablation (Interaction Corium Béton) dépend fortement :

- Du type de béton,
- De la composition du bain de corium (+ béton + métal)

Les connaissances de ces phénomènes sont encore insuffisantes → modèles 0D à l'échelle macroscopique calés sur des données expérimentales

Besoin de connaissances approfondies plus locales:

- ANR IMMOC : dégradation du béton avec et sans charge métallique (expérience et simulation locale)
- ANR MERELAVA : effet macroscopique du renoyage pour un corium avec une forte teneur de béton et d'acier expérience et simulation macroscopique)

Besoin d'expériences analytiques représentatives

Merci pour votre attention !