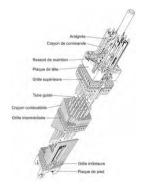
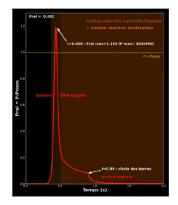


CRITICAL HEAT FLUX Heating in a nuclear reactor


Heating in a nuclear reactor

Complex geometry



Heating in a nuclear reactor

Complex geometry

Transient power

Available experiments

Geometry	Stationnary	Transient
Pipe	DEBORA	PATRICIA
Assembly	OMEGA, KATHY	

Available experiments

Geometry	Stationnary	Transient
Pipe	DEBORA	PATRICIA
Assembly	OMEGA, KATHY	Need code Objective of PhD

JEFS C. Reiss Objective Stages Fountions

Equation

validation

Conclusion

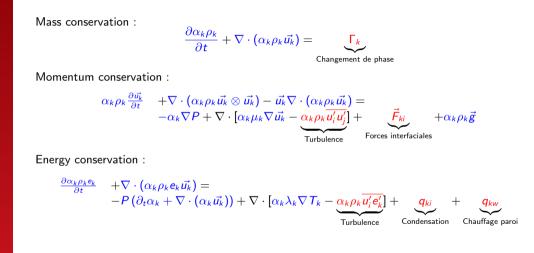
Building a Boiling-Flow Multiphase CFD Framework for Nuclear Reactor Conditions

Journées Écoulements et Fluides de Saclay

Corentin Reiss, corentin.reiss@cea.fr Tutors : C. Colin, A. Gerschenfeld

DM2S/STMF/LMEC

26/06/2023


Ingredients of TrioCMFD

Objective Stages Equations Validation Conclusion

C. Reiss

- $\blacksquare Numerical framework \rightarrow TRUST platform$
- Conservation equations
- Selection and implementation of closure laws
- Step-by-step validation

Conservation equations for each phase

Undisputed terms

C. Reiss

Objective Stages

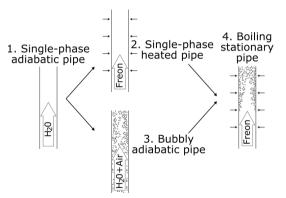
Equations

Conclusion

Terms that need to be modeled

Selected baseline models

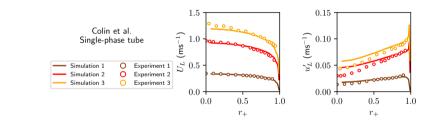
Model ty	e Selected model	Effect
1ϕ turbulen	ce $k-\omega$	
Adaptive wall la	w Reichardt	
	Tomiyama drag	Sets relative velocity
	Sugrue lift	Bubbles sent to wall or core
Interfacial forc	es Burns turbulent dispersion	Spreads bubbles
	Lubchenko wall correction	Pushes bubbles from wall
	Constant-coeff virtual mass	Increases bubble inertia
Wall heat flux partition	n Kurul-Podowski	Liquid heats or vapor forms ?
Condensatio	n Zeitoun	


C. Reiss

Equations

Conclusion

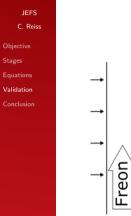
N.B. : mostly come from experiments on single bubbles at P_{atm} or from a purely theoretical analysis \rightarrow Valid in PWR's ?


Validation stages

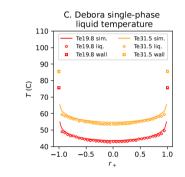
C. Reiss Objective Stages Equations Validation

Conclusion

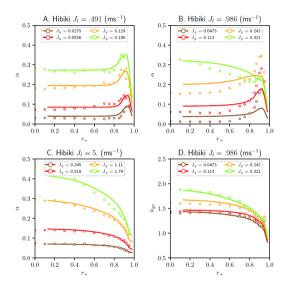
1. Single-phase adiabatic pipe flow



C. Reiss


Equations

Validation

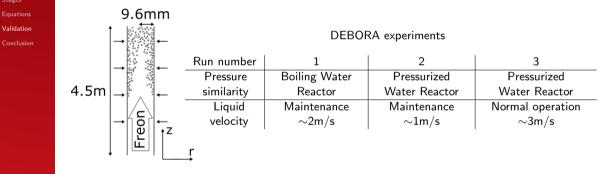

2. Single-phase heated pipe flow

-

3. Bubbly adiabatic pipe flow

H<u>H</u>

C. Reiss


Equations

Validation

We enforce the experimentally measured bubble diameter

CEA | 26/06/2023 | 12 / 22

4. Boiling pipe flow in PWR similarity

C. Reiss

Equations

4. Boiling pipe flow in PWR similarity

How to close the bubble diameter in boiling flow simulations:

Historical approach:

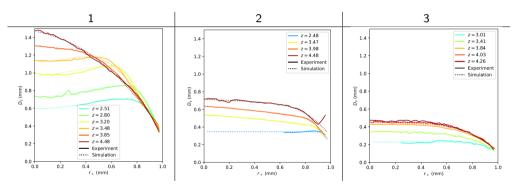
C. Reiss Objective

Stages Equations

Validation Conclusion

- Build and IATE to predict diameters
- 2 Validate the model on atmospheric-pressure adiabatic stationary flows with momentum closures
- **B** Add boiling and condensation terms

Our approach:

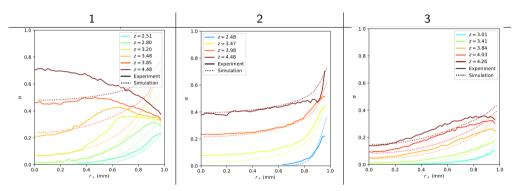

- Select energy and momentum closures
- 2 Enforce 3D map of experimental bubble diameter
- Validate the closures in PWR-similarity conditions
- Future work: model bubble diameters in PWR conditions

JEFS C. Reiss Objective Stages Equations Validation

Conclusion

4. Boiling pipe flow in PWR similarity

Diameter interpolation



C. Reiss

Objective Stages Equations Validation Conclusion

4. Boiling pipe flow in PWR similarity

Atmospheric-pressure closure models are not adapted to nuclear reactor-condition boiling flows

For $u_{\rm bulk} > 2m/s$ something pulls the bubbles away from the wall ightarrow lift force along $-ec{u_r}$

Lack of separate-effect experimental data: still many closure terms to adjust

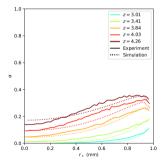
C. Reiss

- Objective Stages Equations
- Validation

4. Boiling pipe flow in PWR similarity

 $Choice \ to \ concentrate \ on \ PWR \ operating \ conditions.$

- Deformable Ishii-Zuber drag force (independent of bubble diameter)
- $C_l = -0.03$: negative constant lift coefficient
- No wall correction : unnecessary thanks to lift force
 - \rightarrow Selected momentum closure terms are independant of bubble diameter



C. Reiss

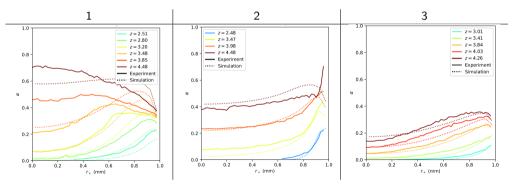
- Objective Stages Equations
- Validation Conclusion

4. Boiling pipe flow in PWR similarity

- Choice to concentrate on PWR operating conditions.
 - Deformable Ishii-Zuber drag force (independent of bubble diameter)
 - $C_l = -0.03$: negative constant lift coefficient
 - No wall correction : unnecessary thanks to lift force
 - \rightarrow Selected momentum closure terms are independant of bubble diameter

NB: the selected closures work on ${\sim}10$ unpublished PWR-operating conditions

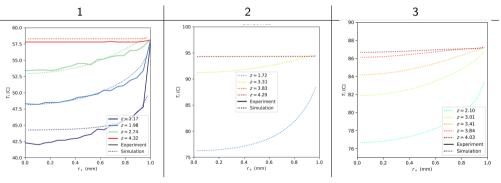
4. Boiling pipe flow in PWR similarity


Modifying the models to improve PWR in operation case (3) impairs the others

C. Reiss

Equations

Validation

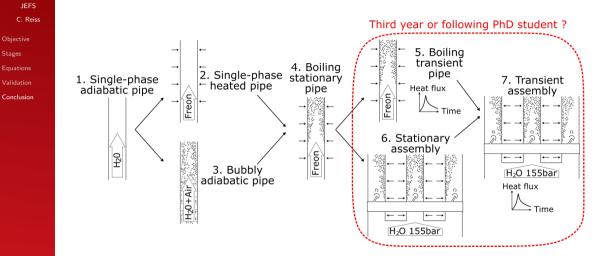

Conclusion

4. Boiling pipe flow in PWR similarity

The liquid is at saturation temperature at the wall at the top of the tube in all simulations

 \rightarrow CHF criterion on evacuation of void fraction from the wall and not energy ?

Conclusion


Objective Stages Equations Validation Conclusion

C. Reiss

Take-home messages :

- We simulate boiling flows by enforcing the experimental diameter
- Atmospheric-pressure closure models are not adapted to **nuclear reactor-conditions** Next steps :
 - Finalize the choice of a set of **momentum and energy** closures that is adapted to reactor conditions
 - Model the bubble diameter in reactor conditions
 - Simulate the physical properties at the wall near the critical heat flux

Conclusion

References

Objective Stages Equations Validation

C. Reiss

TRUST and TrioCFD platforms

- https://github.com/cea-trust-platform
- https://triocfd.cea.fr/
- https://github.com/cea-trust-platform/TrioCFD-code

COS

Equations /alidation Conclusion

Elie Saikali

Thanks to

Yannick Gorsse

Antoine Gerschenfeld

Catherine Colin