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1 - Liquid Metal Battery (LMB)

▶ Definition: system of 3 superimposed
fluid layers (anode/electrolyte/cathode) +
a strong electric current + a relatively
strong temperature.

▶ Interest: energy storage for stationary
applications ⇒ promote renewable
energies.

▶ Avantages: long lifetime + low costs.

▶ Difficulties: hydrodynamic phenomena
(metal pad roll instability, thermal
convection, etc.)⇒ risk of short circuit +
need for thermal efficiency improvement.

▶ Example: Li/CaBr2/Cd, T ≈ 320◦C

Figure: Diagram of an
LMB in discharge (top)
and in charge (bottom)
from H Kim & al. Chem.
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1 - Simplified representation of a LMB

▶ Incompressible fluids.
▶ Non miscible fluids.
▶ Vertical and homogeneous electric

current in the base state (∗)
▶ Electric conductivity of the electrolyte

« electric conductivity of the
electrodes

▶ Thickness of the electrolyte «
thickness of the electrodes

▶ Width of the layers » wavelength of
the disturbance
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Figure: Sketch of the LMB
model in the base state.
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1 - Complexities

▶ Consider viscosity:

⇒ Numerical solution for the eigenvalue problem

▶ Add a third layer:

⇒ Coupling between the 2 interfaces ⇒ All the
modes considered for the initial value problem

▶ Consider the Lorentz force:

⇒ Coupling between the Navier-Stokes (Fluid
Mechanics) equations and the Maxwell equations
(Electromagnetism)

Model 1

Model 2
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1 - Litterature for model 1

Theoretical studies

1. KO Mikaelian Phys. Rev. A 1983
→ inviscid model, N layers,
analytical solutions.

2. S Parhi & G Nath Int. J. Engng
Sci. 1991
→ viscous model, solving method,
stability criterion.

3. KO Mikaelian Phys. Rev. E 1996
→ viscous model, 2 finite layers,
solving method.

Experimental work

1. R Adkins & al.,J. Phys. Rev.
Fluids 2017

Model 1: Mikaelian (3 layers) + consider viscosity
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1 - Litterature for model 2

1. A D Sneyd J. Fluid Mech. 1985
→ Linear stability analysis of two inviscid systems close to LMB:
Hall-Héroult Cell (HHC) and Electric Arc Furnace (EAF) + far
magnetic field.
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Model 2

HHC: the local magnetic field has only a stabilizing effect.
EAF: the local magnetic field can destabilize the system.

2. J W Herreman & al. J. Fluid Mech. 2019 and 2023 to be published
→ Metal pad roll instability with a perturbative method in a
cylindrical model of LMB.
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2 - Formulation
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Figure: sketch of the 2 models.

Assumptions:

▶ Isothermal conditions.

▶ Extreme layers of infinite depth
and infinite width.

▶ Newtonian fluids.

▶ No slip conditions.

▶ Slowly variable regime
(quasistatic approximation).

▶ Coulomb force disregarded.

▶ Magnetic field not bounded at
the interfaces.
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2 - Volume equations

Volume equations in each phase i ∈ {1; 2; 3}:

∇⃗ · u⃗i = 0 (mass balance)
ρi

(
u⃗i,t + (u⃗i · ∇⃗)u⃗i

)
= −∇⃗pi + µi∆⃗u⃗i + f⃗Li + ρi g⃗ (momentum balance)

With f⃗Li = J⃗i × B⃗i , the Lorentz force in the layer (i)

Maxwell equations and Ohm’s law:

∇⃗ × B⃗i = µ0J⃗i (Maxwell-Ampère)
∇⃗ × E⃗i = 0⃗ (Maxwell-Faraday)
∇⃗ · B⃗i = 0 (Maxwell-Thomson)
J⃗i = σi E⃗i (Ohm’s law)

ρ1, σ1, µ1
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2 - Jump conditions

Jump conditions at each interface i i + 1
with i ∈ {1; 2}:

(i + 1)

(i)

zii+1

n⃗i

u⃗i · n⃗i = v⃗ii+1 · n⃗i = u⃗i+1 · n⃗i (mass balance)
(pi+1 − pi + γii+1κii+1) n⃗i = (¯̄τi+1 − ¯̄τi ) · n⃗i (momentum balance)
u⃗i × n⃗i = u⃗i+1 × n⃗i (no slip)
B⃗i · n⃗i = B⃗i+1 · n⃗i , B⃗i × n⃗i = B⃗i+1 × n⃗i (magnetic field)
J⃗i · n⃗i = J⃗i+1 · n⃗i , E⃗i × n⃗i = E⃗i+1 × n⃗i (electric field)

with n⃗i =
(
−zii+1,x ,−zii+1,y , 1

)
T , κii+1 =

zii+1,x,x

(1+z2
ii+1,x)

3
2
+

zii+1,y,y

(1+z2
ii+1,y)

3
2
and

¯̄τi = µi (∇⃗u⃗i + (∇⃗u⃗i )
T )

The unit vector normal to zii+1, the curvature of zii+1 and the viscous
stress-tensor in the layer (i)

MC Renoult Study of an interfacial instability in a 3-layer fluid system. 9 / 29



2 - Basic state

Definition:

▶ Fluids at rest: u⃗∗i = 0⃗

▶ Interface 12 plane: z∗12 = 0

▶ Interface 23 plane: z∗23 = h

Volume equations:

−∇⃗(p∗i + ρigz) + J∗e⃗z × B⃗∗
i = 0⃗ (momentum balance)

∇⃗ × B⃗∗
i = µ∗

0 e⃗z (Maxwell-Ampère)
∇⃗ · B⃗∗

i = 0 (Maxwell-Thomson)

Jump conditions:

p∗i+1 − p∗i = 0 at z = (i − 1)h
B⃗∗
i+1 − B⃗∗

i = 0 at z = (i − 1)h
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2 - Basic state

Admissible magnetic fields:

B⃗∗
i = B⃗∗

C + α · x⃗ with α = µ0J
∗

 Q R − 1
2 0

R + 1
2 −Q 0

0 0 0

 = αlocal + αfar

With B⃗∗
C , a constant vector and x⃗ = (x , y , z)T .

Q and R refer to the far magnetic field.

Solution for the pressure:

p∗1(x , y , z) = −ρ1gz + p∗c + p∗M(x , y)
p∗2(x , y , z) = −ρ2gz + p∗c + p∗M(x , y)
p∗3(x , y , z) = −ρ3gz + gh(ρ3 − ρ2) + p∗c + p∗M(x , y)

with p∗c = p∗1(z = 0) a constant and p∗M = µ0J
∗
(
yB⃗∗

c · e⃗x − xB⃗∗
c · e⃗y

)
+

µ0J
∗2 (Qxy − 1

4

(
x2 + y2

)
+ 1

2R
(
y2 − x2

))
, the magnetic pressure in

the base state.
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2 - Perturbed state

Definition:

u⃗i (x , y , z , t) = u⃗ ∗
i + u⃗ ′

i (x , y , z , t) = u⃗ ′
i with u′i ≪ 1

pi (x , y , z , t) = p∗i (z) + p′i (x , y , z , t) with p′i ≪ p∗i
zii+1(x , y , t) = z∗ii+1 + z ′ii+1(x , y , t) with z ′ii+1 ≪ z∗ii+1
J⃗i (x , y , z , t) = J⃗∗ + J⃗ ′

i (x , y , z , t) with J ′i << J∗

B⃗i (x , y , z , t) = B⃗ ∗
i (x , y , z) + B⃗ ′

i (x , y , z , t) with B ′
i << B∗

i

E⃗i (x , y , z , t) = E⃗ ∗
i (z) + E⃗ ′

i (x , y , z , t) with E ′
i << E∗

i

Volume equations in each phase i ∈ {1; 2; 3}: Mass balance: uij,j = 0

Linearized momentum balance: ρiuij,t = −p′i,j + µi∆uij + f ′Lij
j ∈ {x ; y ; z} with f ′Lij = ϵjlmJ

∗
ilB

′
im + ϵjlmJ

′
ilB

∗
im, the disturbed Lorentz

force

Linearized Maxwell equations and Ohm’s law:

ϵjlmB
′
im,l = µ0J⃗

′
ij , ϵjlmE

′
im,l = 0⃗

B ′
ij,j = 0 , J ′ij = σiE

′
ij
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2 - Perturbed state

Linearized jump conditions at z = (i − 1)h, i ∈ {1; 2}:

uiz = z ′ii+1,t = ui+1z

uix = ui+1x
uiy = ui+1y
p′i+1 − p′i − (ρi+1 − ρi )gz

′
ii+1 − γii+1(z

′
ii+1,x,x + z ′ii+1,y ,y ) =

2(µi+1ui+1z,z − µiuiz,z)
µi+1(ui+1z,x + ui+1x,z) = µi (uiz,x + uix,z)
µi+1(ui+1z,y + ui+1y ,z) = µi (uiz,y + uiy ,z)

B⃗ ′
i · n⃗i = B⃗ ′

i+1 · n⃗i
B⃗ ′
i × n⃗i = B⃗ ′

i+1 × n⃗i
J⃗ ′i · n⃗i = J⃗ ′i+1 · n⃗i
E⃗ ′
i × n⃗i = E⃗ ′

i+1 × n⃗i
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2 - Dimensionless numbers

Solutions searched under the form: e(ikxx+ikyy+ωt) with
k2 = k2

x + k2
y the wavenumber of the perturbation and ω the time

coefficient (complex number).

Vaschy-Buckingham theorem ⇒ 9 dimensionless numbers for
model 1 and 5 dimensionless numbers for model 2

ρr12 = ρ2
ρ1

, ρr13 = ρ3
ρ1

(densities)

Rei =
√

g
k3

1
νi

(viscosities)

Boii+1 = (ρi+1−ρi )g
γii+1k2 = k2

c
k2 (surface tensions)

With kc the cut-off wave number
K = kh (thickness)
Ω = ω

√
gk (pulsation)

J = Jlocal + Jfar (magnetic field)
With Jlocal = −µ0J

∗2/ρ1g and Jfar = Jfar (Q,R)

Dispersion relation: f (ρr12, ρr23,Rei ,Boii+1, J,K ,Ω) = 0
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2 - Dispersion relation

▶ Volume equations → uiz :

u1z = (C1e
kz + D1e

q1z)e(ikxx+iky y+ωt)

u2z = (A2e
−kz + B2e

−q2z + C2e
kz + D2e

q2z)e(ikxx+iky y+ωt)

u3z = (A3e
−kz + B3e

−q3z)e(ikxx+iky y+ωt)

with C1, D1, A2, B2, C2, D2, A3 and B3 8 unknown coefficients
and qi =

√
k2 + ωρi/µi the modified wavenumber in phase i .

▶ 4 equations at each interface → 8 equations → closed problem

Dispersion relation: solution of M·
(
C1,D1,A2,B2,C2,D2,A3,B3

)
T=0

Non-trivial solutions are solutions of

|M| = 0
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2 - Solutions

For model 1:

There is one analytical solution, stable ∀k :

Ω1 =
ω1√
gk

=

√
g

k3
ρi
µi

= −Re−1
2

And 3 or 4 other solutions, depending on k , determined numerically.

For model 2:

Ω4f4(K , ρr12, ρr13) + Ω2f2(K , ρr12, ρr13, J) + f0(K , ρr12, ρr13, J) = 0

With:

f4 = ρr12(ρr12 sinh(K ) + cosh(K )) + ρr13(ρr12 cosh(K ) + sinh(K ))
f2 = ρr12(1 − ρr13)(sinh(K ) + cosh(K ))− (1 + ρr13)J sinh(K )−1

f0 = (ρr12+ρr13)(1−ρr12) sinh(K )−(1+ρr13)J sinh(K )−1−J2 sinh(K )−1
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3 - 2 limit cases for comparison for model 1

1. 2 separate 2-layer fluid systems (considering the fluid viscosities)

(3)/(2)/(1) is compared to (2)/(1) and (3)/(2) with (3)≡(1)

▶ (2)/(1) is gravitationally unstable.
▶ (3)/(2) is gravitationally stable.
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2. 3-layer inviscid model of Mikaelian
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3 - Solutions for 2 separate 2-layer fluid systems

g⃗ -unstable vs g⃗ -stable

kc : cutoff wavenumber due to surface tension.
Re(w) > 0 → unstable solution; Im(w) ̸= 0 → oscillations.
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3 - All solutions on the same graph!

k < kc : 1 unstable + 2 stables
k > kc : 4 stables
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3 - Solutions for the 3-layer fluid system, h=1 mm

3 totally stable solutions: 1 analytically, 2 numerically determined
Other solutions: 2 stable for k > kc , 1 unstable for k < kc .
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3 - Effect of h on the unstable solution

Effect of h:

▶ Increasing h (i.e. decreasing interface coupling) increases ω.
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3 - Comparison to experimental values

Effect of h on Adkins data compared with model 1 and Mikaelian’s
theory:

▶ The viscous model improves the prediction as h is reduced.
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3 - Effect of densities on the eigenvalues

Effect of the dimensionless density ρ−1
12 = ρ2

ρ1
:

for h = 1mm

▶ The density ratio has a strong effect on the unstable
eigenvalues
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3 - Effect of viscosities on the eigenvalues

Effect of the ratio Re1
Re2

= ν2
ν1

:

for h = 1mm

▶ The viscosity ratio has a strong effect on the most stable
eigenvalue
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3 - Conditions of stability for the model 2

ρr12 = 0.27 and ρr13 = {0; 0.25} (values of Herreman & al.):

Figure: Stability diagram for an EAF model where ρr13 = 0 (left) and
the present LMB model (right)

▶ An unstable region appears in the middle of the stable one ⇒
making difficult the conception of such a battery.
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4 - Conclusion

▶ Development of 2 models for a 3-layer fluid system:

1. One that considers the viscosity of the fluids
▶ The instability is less important when the interfaces are

coupled
▶ The lower ρ1 is with respect to ρ2 the less the instability will

be important

2. One that considers the Lorentz force acting on the fluids
▶ Find a liquid metal as light as possible for the top layer
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4 - Outlooks for model 1

▶ Solve the initial value problem
⇒ perform numerical
simulations.

▶ Archer (In-house code) has been
chosen. 2 steps are missing:

1. 3 phases (J. C. Brändle de
Motta)

2. Magneto-static (R. Canu)

Figure: Comparison between theory
and simulations for a 2-layer fluid
system.
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4 - Outlooks for model 2

▶ Study the standing wave ⇒ determine a more general Sele criterion.

(1)

(2)

0

h2

−h1
lx
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z

x

J⃗ ′1

J⃗ ′2 J⃗ ′2

g⃗ B⃗∗
z

ρ1, σ1 >> σ2

ρ2,
σ2

f⃗ ′L1

J⃗∗ Sele’s criterion:

β =
J∗B∗

z lx ly
g(ρ1−ρ2)h1h2

> βcr = 12

▶ Cross-validate the theoretical results with numerical simulations.

▶ Develop a viscid model for LMB.

▶ Develop a weakly non linear theory to extend the time of validity of
the model.
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Thank you for your attention.

Any questions?
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