

Study of an interfacial instability in a 3-layer fluid system.

Antoine Simon, Jorge-César Brändle de Motta, Christophe Dumouchel & <u>Marie-Charlotte Renoult</u>

> CNRS UMR 6614 - CORIA, Rouen, France University of Normandy

Funding: HILIMBA project, 2 labs, 2 PhD students, 320 k€

GDR TRANSINTER, Aussois, France, 26-28/06/2023

Liquid Metal Battery (LMB)

- Definition: system of 3 superimposed fluid layers (anode/electrolyte/cathode) + a strong electric current + a relatively strong temperature.
- ► Interest: energy storage for stationary applications ⇒ promote renewable energies.
- Avantages: long lifetime + low costs.
- ▶ Difficulties: hydrodynamic phenomena (metal pad roll instability, thermal convection, etc.)⇒ risk of short circuit + need for thermal efficiency improvement.

Figure: Diagram of an LMB in discharge (top) and in charge (bottom) from H Kim & al. Chem.

Example: Li/CaBr2/Cd, $T \approx 320^{\circ}C$ MC Renoult Study of an interfacial instability in a 3-layer fluid Reven.

1 - Simplified representation of a LMB

- Incompressible fluids.
- Non miscible fluids.
- Vertical and homogeneous electric current in the base state (*)
- Electric conductivity of the electrolyte
 « electric conductivity of the
 electrodes
- Thickness of the electrolyte « thickness of the electrodes
- Width of the layers » wavelength of the disturbance

Figure: Sketch of the LMB model in the base state.

1 - Complexities

Consider viscosity:

- \Rightarrow Numerical solution for the eigenvalue problem
- Add a third layer:
 - \Rightarrow Coupling between the 2 interfaces \Rightarrow All the modes considered for the initial value problem
 - Consider the Lorentz force:
 - ⇒ Coupling between the Navier-Stokes (Fluid Mechanics) equations and the Maxwell equations (Electromagnetism)

Model 2

1 - Litterature for model 1

Theoretical studies

- 1. KO Mikaelian Phys. Rev. A 1983 \rightarrow inviscid model, N layers, analytical solutions.
- S Parhi & G Nath Int. J. Engng Sci. 1991
 → viscous model, solving method, stability criterion.
- KO Mikaelian Phys. Rev. E 1996
 → viscous model, 2 finite layers, solving method.

Experimental work

1. R Adkins & al., J. Phys. Rev. Fluids 2017

Model 1: Mikaelian (3 layers) + consider viscosity

MC Renoult

1 - Litterature for model 2

1. A D Sneyd J. Fluid Mech. 1985

 \rightarrow Linear stability analysis of two inviscid systems close to LMB: Hall-Héroult Cell (HHC) and Electric Arc Furnace (EAF) + far magnetic field.

HHC: the local magnetic field has only a stabilizing effect. EAF: the local magnetic field can destabilize the system.

2. J W Herreman & al. J. Fluid Mech. 2019 and 2023 to be published \rightarrow Metal pad roll instability with a perturbative method in a cylindrical model of LMB.

MC Renoult

2 - Formulation

Figure: sketch of the 2 models.

Assumptions:

- Isothermal conditions.
- Extreme layers of infinite depth and infinite width.
- Newtonian fluids.
- No slip conditions.
- Slowly variable regime (quasistatic approximation).
- Coulomb force disregarded.
- Magnetic field not bounded at the interfaces.

Volume equations

Volume equations in each phase $i \in \{1; 2; 3\}$:

$$\vec{
abla} \cdot \vec{u_i} = 0$$
 (mass balance)
 $ho_i \left(\vec{u_{i,t}} + (\vec{u_i} \cdot \vec{
abla}) \vec{u_i} \right) = -\vec{
abla} p_i + \mu_i \vec{\Delta} \vec{u_i} + \vec{f_{Li}} + \rho_i \vec{g}$ (momentum balance)

With $\vec{f}_{Li} = \vec{J}_i \times \vec{B}_i$, the Lorentz force in the layer (i)

Maxwell equations and Ohm's law:

 $\vec{\nabla} \times \vec{B}_i = \mu_0 \vec{J}_i \quad (Maxwell-Ampère)$ $\vec{\nabla} \times \vec{E}_i = \vec{0} \quad (Maxwell-Faraday)$ $\vec{\nabla} \cdot \vec{B}_i = 0 \quad (Maxwell-Thomson)$ $\vec{J}_i = \sigma_i \vec{E}_i \quad (Ohm's law)$

MC Renoult

Jump conditions at each interface ii + 1 with $i \in \{1; 2\}$:

 $\begin{array}{ll} \vec{u_i} \cdot \vec{n_i} = \vec{v_{ii+1}} \cdot \vec{n_i} = \vec{u_{i+1}} \cdot \vec{n_i} & (\text{mass balance}) \\ (p_{i+1} - p_i + \gamma_{ii+1}\kappa_{ii+1}) \vec{n_i} = (\bar{\bar{\tau}}_{i+1} - \bar{\bar{\tau}}_i) \cdot \vec{n_i} & (\text{momentum balance}) \\ \vec{u_i} \times \vec{n_i} = \vec{u_{i+1}} \times \vec{n_i} & (\text{no slip}) \\ \vec{B_i} \cdot \vec{n_i} = \vec{B_{i+1}} \cdot \vec{n_i} & , & \vec{B_i} \times \vec{n_i} = \vec{B_{i+1}} \times \vec{n_i} & (\text{magnetic field}) \\ \vec{J_i} \cdot \vec{n_i} = \vec{J_{i+1}} \cdot \vec{n_i} & , & \vec{E_i} \times \vec{n_i} = \vec{E_{i+1}} \times \vec{n_i} & (\text{electric field}) \end{array}$

with $\vec{n}_i = (-z_{ii+1,x}, -z_{ii+1,y}, 1)^T$, $\kappa_{ii+1} = \frac{z_{ii+1,x,x}}{(1+z_{ii+1,x}^2)^{\frac{3}{2}}} + \frac{z_{ii+1,y,y}}{(1+z_{ii+1,y}^2)^{\frac{3}{2}}}$ and $\bar{\tau}_i = \mu_i (\vec{\nabla} \vec{u}_i + (\vec{\nabla} \vec{u}_i)^T)$

The unit vector normal to z_{ii+1} , the curvature of z_{ii+1} and the viscous stress-tensor in the layer (*i*)

Basic state

Definition:

- Fluids at **rest**: $\vec{u}_i^* = \vec{0}$
- Interface 12 plane: $z_{12}^* = 0$
- Interface 23 plane: $z_{23}^* = h$

Volume equations:

$$\begin{split} & -\vec{\nabla}(p_i^* + \rho_i gz) + J^* \vec{e_z} \times \vec{B}_i^* = \vec{0} \quad (\text{momentum balance}) \\ & \vec{\nabla} \times \vec{B}_i^* = \mu_0^* \vec{e_z} \quad (\text{Maxwell-Ampère}) \\ & \vec{\nabla} \cdot \vec{B}_i^* = 0 \quad (\text{Maxwell-Thomson}) \end{split}$$

Jump conditions:

$$p_{i+1}^* - p_i^* = 0$$
 at $z = (i-1)h$
 $\vec{B}_{i+1}^* - \vec{B}_i^* = 0$ at $z = (i-1)h$

MC Renoult

Basic state

Admissible magnetic fields:

$$\vec{B}_{i}^{*} = \vec{B}_{C}^{*} + \alpha \cdot \vec{x} \text{ with } \alpha = \mu_{0} J^{*} \begin{pmatrix} Q & R - \frac{1}{2} & 0 \\ R + \frac{1}{2} & -Q & 0 \\ 0 & 0 & 0 \end{pmatrix} = \alpha_{\textit{local}} + \alpha_{\textit{far}}$$

With \vec{B}_{C}^{*} , a constant vector and $\vec{x} = (x, y, z)^{T}$. Q and R refer to the far magnetic field.

Solution for the pressure:

$$p_1^*(x, y, z) = -\rho_1 gz + p_c^* + p_M^*(x, y) p_2^*(x, y, z) = -\rho_2 gz + p_c^* + p_M^*(x, y) p_3^*(x, y, z) = -\rho_3 gz + gh(\rho_3 - \rho_2) + p_c^* + p_M^*(x, y)$$

with $p_c^* = p_1^*(z=0)$ a constant and $p_M^* = \mu_0 J^* \left(y \vec{B}_c^* \cdot \vec{e}_x - x \vec{B}_c^* \cdot \vec{e}_y \right) + \mu_0 J^{*2} \left(Qxy - \frac{1}{4} \left(x^2 + y^2 \right) + \frac{1}{2} R \left(y^2 - x^2 \right) \right)$, the magnetic pressure in the base state.

MC Renoult

Perturbed state

Definition:

$$\vec{u}_{i}(x, y, z, t) = \vec{u}_{i}^{*} + \vec{u}_{i}'(x, y, z, t) = \vec{u}_{i}' \text{ with } u_{i}' \ll 1$$

$$p_{i}(x, y, z, t) = p_{i}^{*}(z) + p_{i}'(x, y, z, t) \text{ with } p_{i}' \ll p_{i}^{*}$$

$$z_{ii+1}(x, y, t) = z_{ii+1}^{*} + z_{ii+1}'(x, y, t) \text{ with } z_{ii+1}' \ll z_{ii+1}^{*}$$

$$\vec{J}_{i}(x, y, z, t) = \vec{J}^{*} + \vec{J}_{i}'(x, y, z, t) \text{ with } J_{i}' << J^{*}$$

$$\vec{B}_{i}(x, y, z, t) = \vec{B}_{i}^{*}(x, y, z) + \vec{B}_{i}'(x, y, z, t) \text{ with } B_{i}' << B_{i}^{*}$$

$$\vec{E}_{i}(x, y, z, t) = \vec{E}_{i}^{*}(z) + \vec{E}_{i}'(x, y, z, t) \text{ with } E_{i}' << E_{i}^{*}$$

Volume equations in each phase $i \in \{1; 2; 3\}$: Mass balance: $u_{ij,j} = 0$

Linearized momentum balance: $\rho_i u_{ij,t} = -p'_{i,j} + \mu_i \Delta u_{ij} + f'_{Lij}$ $j \in \{x; y; z\}$ with $f'_{Lij} = \epsilon_{jlm} J^*_{il} B'_{im} + \epsilon_{jlm} J'_{il} B^*_{im}$, the disturbed Lorentz force

Linearized Maxwell equations and Ohm's law:

$$\begin{aligned} \epsilon_{jlm} B'_{im,l} &= \mu_0 \vec{J}'_{ij} \quad , \quad \epsilon_{jlm} E'_{im,l} = \vec{0} \\ B'_{ij,j} &= 0 \quad , \quad J'_{ij} = \sigma_i E'_{ij} \end{aligned}$$

MC Renoult

Linearized jump conditions at z = (i - 1)h, $i \in \{1, 2\}$:

$$\begin{aligned} u_{iz} &= z'_{ii+1,t} = u_{i+1z} \\ u_{ix} &= u_{i+1x} \\ u_{iy} &= u_{i+1y} \\ p'_{i+1} - p'_i - (\rho_{i+1} - \rho_i)gz'_{ii+1} - \gamma_{ii+1}(z'_{ii+1,x,x} + z'_{ii+1,y,y}) = \\ 2(\mu_{i+1}u_{i+1z,z} - \mu_i u_{iz,z}) \\ \mu_{i+1}(u_{i+1z,x} + u_{i+1x,z}) &= \mu_i(u_{iz,x} + u_{ix,z}) \\ \mu_{i+1}(u_{i+1z,y} + u_{i+1y,z}) &= \mu_i(u_{iz,y} + u_{iy,z}) \\ \vec{B}'_i \cdot \vec{n}_i &= \vec{B}'_{i+1} \cdot \vec{n}_i \\ \vec{B}'_i \times \vec{n}_i &= \vec{D}'_{i+1} \cdot \vec{n}_i \\ \vec{J}'_i \cdot \vec{n}_i &= \vec{J}'_{i+1} \cdot \vec{n}_i \\ \vec{E}'_i \times \vec{n}_i &= \vec{E}'_{i+1} \times \vec{n}_i \end{aligned}$$

MC Renoult

Dimensionless numbers

Solutions searched under the form: $e^{(ik_xx+ik_yy+\omega t)}$ with $k^2 = k_x^2 + k_y^2$ the wavenumber of the perturbation and ω the time coefficient (complex number).

Vaschy-Buckingham theorem \Rightarrow 9 dimensionless numbers for model 1 and 5 dimensionless numbers for model 2

 $\rho_{r12} = \frac{\rho_2}{\rho_1}$, $\rho_{r13} = \frac{\rho_3}{\rho_1}$ (densities) $Re_i = \sqrt{\frac{g}{k^3} \frac{1}{\nu_i}}$ (viscosities) $Bo_{ii+1} = \frac{(\rho_{i+1}-\rho_i)g}{\gamma_{ii+1}k^2} = \frac{k_c^2}{k^2}$ (surface tensions) With k_c the cut-off wave number K = kh (thickness) $\Omega = \omega \sqrt{gk}$ (pulsation) $J = J_{local} + J_{far}$ (magnetic field) With $J_{local} = -\mu_0 J^{*2} / \rho_1 g$ and $J_{far} = J_{far}(Q, R)$ Dispersion relation: $f(\rho_{r12}, \rho_{r23}, Re_i, Bo_{ii+1}, J, K, \Omega) = 0$ Study of an interfacial instability in a 3-layer fluid system.

MC Renoult

Dispersion relation

► Volume equations → u_{iz}:

$$u_{1z} = (C_1 e^{kz} + D_1 e^{q_1 z}) e^{(ik_x x + ik_y y + \omega t)}$$

$$u_{2z} = (A_2 e^{-kz} + B_2 e^{-q_2 z} + C_2 e^{kz} + D_2 e^{q_2 z}) e^{(ik_x x + ik_y y + \omega t)}$$

$$u_{3z} = (A_3 e^{-kz} + B_3 e^{-q_3 z}) e^{(ik_x x + ik_y y + \omega t)}$$

with C_1 , D_1 , A_2 , B_2 , C_2 , D_2 , A_3 and B_3 8 unknown coefficients and $q_i = \sqrt{k^2 + \omega \rho_i / \mu_i}$ the modified wavenumber in phase *i*.

▶ 4 equations at each interface \rightarrow 8 equations \rightarrow closed problem

Dispersion relation: solution of M

$$M \cdot (C_1, D_1, A_2, B_2, C_2, D_2, A_3, B_3)^T = 0$$

Non-trivial solutions are solutions of

$$|M| = 0$$

2 - Solutions

For model 1:

There is one **analytical** solution, stable $\forall k$:

$$\Omega_1 = \frac{\omega_1}{\sqrt{gk}} = \sqrt{\frac{g}{k^3}} \frac{\rho_i}{\mu_i} = \boxed{-Re_2^{-1}}$$

And 3 or 4 other solutions, depending on k, determined **numerically**.

For model 2:

$$\Omega^4 f_4(K, \rho_{r12}, \rho_{r13}) + \Omega^2 f_2(K, \rho_{r12}, \rho_{r13}, J) + f_0(K, \rho_{r12}, \rho_{r13}, J) = 0$$

With:

$$\begin{split} f_4 &= \rho_{r12}(\rho_{r12}\sinh(K) + \cosh(K)) + \rho_{r13}(\rho_{r12}\cosh(K) + \sinh(K)) \\ f_2 &= \rho_{r12}(1 - \rho_{r13})(\sinh(K) + \cosh(K)) - (1 + \rho_{r13})J\sinh(K)^{-1} \\ f_0 &= (\rho_{r12} + \rho_{r13})(1 - \rho_{r12})\sinh(K) - (1 + \rho_{r13})J\sinh(K)^{-1} - J^2\sinh(K)^{-1} \end{split}$$

MC Renoult

3 - 2 limit cases for comparison for model 1

1. 2 separate 2-layer fluid systems (considering the fluid viscosities)

(3)/(2)/(1) is compared to (2)/(1) and (3)/(2) with $(3)\equiv(1)$

- (2)/(1) is gravitationally unstable.
- ► (3)/(2) is gravitationally **stable**.

2. 3-layer inviscid model of Mikaelian

3 - Solutions for 2 separate 2-layer fluid systems

 k_c : cutoff wavenumber due to surface tension. $\mathfrak{Re}(w) > 0 \rightarrow$ unstable solution; $\mathfrak{Im}(w) \neq 0 \rightarrow$ oscillations.

MC Renoult

Study of an interfacial instability in a 3-layer fluid system.

18 / 29

3 - All solutions on the same graph!

 $k < k_c$: 1 unstable + 2 stables $k > k_c$: 4 stables

MC Renoult

3 - Solutions for the 3-layer fluid system, h=1 mm

3 totally **stable** solutions: 1 analytically, 2 numerically determined Other solutions: 2 **stable** for $k > k_c$, 1 **unstable** for $k < k_c$.

MC Renoult

3 - Effect of *h* on the unstable solution

Effect of h:

lncreasing h (i.e. decreasing interface coupling) increases ω .

MC Renoult

Effect of h on Adkins data compared with model 1 and Mikaelian's theory:

▶ The viscous model improves the prediction as *h* is reduced.

MC Renoult

3 - Effect of densities on the eigenvalues

Effect of the dimensionless density $\rho_{12}^{-1} = \frac{\rho_2}{\rho_1}$:

The density ratio has a strong effect on the unstable eigenvalues

MC Renoult

3 - Effect of viscosities on the eigenvalues

Effect of the ratio $\frac{Re_1}{Re_2} = \frac{\nu_2}{\nu_1}$:

The viscosity ratio has a strong effect on the most stable eigenvalue

MC Renoult

3 - Conditions of stability for the model 2

 $\rho_{r12} = 0.27$ and $\rho_{r13} = \{0; 0.25\}$ (values of Herreman & al.):

Figure: Stability diagram for an EAF model where $\rho_{r13} = 0$ (left) and the present LMB model (right)

An unstable region appears in the middle of the stable one ⇒ making difficult the conception of such a battery.

MC Renoult

Development of 2 models for a 3-layer fluid system:

- 1. One that considers the viscosity of the fluids
 - The instability is less important when the interfaces are coupled
 - The lower ρ₁ is with respect to ρ₂ the less the instability will be important
- 2. One that considers the Lorentz force acting on the fluids
 - Find a liquid metal as light as possible for the top layer

4 - Outlooks for model 1

- ► Solve the initial value problem ⇒ perform numerical simulations.
- Archer (In-house code) has been chosen. 2 steps are missing:
 - 1. 3 phases (J. C. Brändle de Motta)
 - 2. Magneto-static (R. Canu)

Figure: Comparison between theory and simulations for a 2-layer fluid system.

MC Renoult

4 - Outlooks for model 2

• Study the standing wave \Rightarrow determine a more general Sele criterion.

- Cross-validate the theoretical results with numerical simulations.
- Develop a viscid model for LMB.
- Develop a weakly non linear theory to extend the time of validity of the model.

Thank you for your attention.

Any questions?

MC Renoult