

Towards modeling the impact of the aspect ratio in an energy model describing the transient flow boiling crisis at high subcooling

GDR Transferts et Interfaces, Aussois France

Elie ROUMET^{1,2} Raksmy NOP¹ Marie-Christine DULUC² Nicolas DORVILLE¹

¹ Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides, 91191, Gif-sur-Yvette, France.

² Lafset, CNAM, HESAM Université, 292 rue Saint-Martin 75003 Paris, France

Table of Contents

- 1. Transient subcooled boiling crisis and nuclear safety
- 2. The extended Homogeneous Mantle Model (eHMM)
- **3.** Model results and discussion

Transient subcooled boiling crisis and nuclear safety

1. Nuclear Safety Context 2. Theoretical Modeling

3. Results and Discussion 4. Conclusion and Perspectives

BORAX: A design basis accident for nuclear safety

Pool type research reactor:

- Coolant at room temperature
- Low pressure (a few bar)
- Highly enriched core

SPERT I Destructive Test conducted at Idaho National Laboratory by the US Atomic Energy Commission **Spano**, (1962)

Effect of transient heating on the boiling curve of water

Few mecanistic models exist in the litterature for transient CHF eg: **Pasamehmetoglu JHT 1990**

1. Nuclear Safety Context

The extended Homogeneous Mantle Model (eHMM)

High speed shadowgraphy of the transient flow boiling crisis at high subcooling (70 000 fps *courtesy of* Nop (2020) [Ph. D. thesis])

† †	1		† †	1	1	1	t 1	•	1	1	1	t	t	1	t	1	t	1	t	t	t	t	t	t	1	$q_w''(t) \propto e^{t/\tau}$
------------	---	--	------------	---	---	---	-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	-------------------------------

Operating conditions							
τ (ms)	100						
Re	35 000						
ΔT_{sub} (K)	50						
P (bar)	1						
L/e	4						

Phenomenological considerations of the model:

cea Towards modeling the impact of aspect ratio in flow boiling - E. ROUMET, R.NOP, M.-C. DULUC, N. DORVILLE

Schematic description of the Homogeneous Mantle Model based on experimental observations

N.B. The mantle thickness δ is not drawn to scale

• Critical Energy of the fluid:

$$E_{crit}^{\prime\prime\prime} = \rho_l c_p \Delta T_{sub} \left[J/m^3 \right]$$

 $\Delta T_{sub} = T_{sat}(P) - T_{inlet}$

• Local boiling crisis condition:

$$E_m^{\prime\prime\prime}(x = L, t = t_{CHF}) = E_{crit}^{\prime\prime\prime}$$

Mathematical framework of the model

N.B. The mantle thickness δ is not drawn to scale

Homogeneous Mantle Model governing equations:

Original model Nop et al. IJTS, 2021:

Isothermal bulk assumption:

$$T_b = const \Rightarrow E_b^{\prime\prime\prime\prime} = const$$

$$\frac{\partial E_m^{\prime\prime\prime}}{\partial t} + u_m \frac{\partial E_m^{\prime\prime\prime}}{\partial x} + \frac{v_m}{\delta} E_m^{\prime\prime\prime} = \frac{q_w^{\prime\prime}}{\delta}$$

Extended model

To model high L/e configurations we introduced variable bulk temperature

$$\begin{cases} \frac{\partial E_m^{\prime\prime\prime\prime}}{\partial t} + u_m \frac{\partial E_m^{\prime\prime\prime\prime}}{\partial x} + \frac{v_m}{\delta} (E_m^{\prime\prime\prime\prime} - E_b^{\prime\prime\prime}) = \frac{q_w^{\prime\prime}}{\delta} \\ \frac{\partial E_b^{\prime\prime\prime\prime}}{\partial t} + u_b \frac{\partial E_b^{\prime\prime\prime\prime}}{\partial x} + \frac{v_m}{e - \delta} (E_b^{\prime\prime\prime\prime} - E_m^{\prime\prime\prime}) = 0 \end{cases}$$

If the mantle thickness δ is known, we can compute the transient CHF using the model

Bodel results and discussion

Towards modeling the impact of aspect ratio in flow boiling - E. ROUMET, R.NOP, M.-C. DULUC, N. DORVILLE

Experimental data investigated in this study

Data obtained from international collaboration between CEA and MIT

Data source	Kossolapov et al. (2020)[IJHMT]	Chavagnat et al. (2022)[NURETH19]						
P (bar)	1	2 - 12						
$\Delta T_{sub}(K)$	25 - 75	25 - 160						
$G(10^3 kg.m^{-2}.s^{-1})$	0.3 – 2	0.9 - 19						
τ (<i>ms</i>)	5 - 500	5 – 200						
L/e		1 - 20						

The mantle thickness δ is determined using an inverse method applied to experimental data

4. Conclusion and Perspectives

Model response during transient heating $q''_w(t) \propto e^{t/\tau}$

	Simulated conditions
P (bar)	10
$\Delta T_{sub}(K)$	100
$G(10^3 kg.m^{-2}.s^{-1})$	2.6
τ (<i>ms</i>)	90
L/e	10

• Non dimensionnal energy:

 $E^* = E^{\prime\prime\prime} / E^{\prime\prime\prime}_{crit}$

• Non dimensional boiling criterion

 $E_m^*(t = t_{CHF}, x = L) = 1$

Homogeneous mantle thickness δ predicted behavior

<u>Characteristic thermal thickness:</u>

$$\delta_T = \frac{\delta_v}{Pr} = \frac{\alpha}{u^*}$$

 <u>Characteristic advection time in</u> the mantle

For low aspect ratio data, we have a simple equation to determine δ .

N.B. The mantle thickness δ is not the thermal boundary layer

Homogeneous mantle thickness δ predicted behavior

<u>Characteristic thermal thickness:</u>

$$\delta_T = \frac{\delta_v}{Pr} = \frac{\alpha}{u^*}$$

 <u>Characteristic advection time in</u> the mantle

$$\tau_x = \frac{L}{u_{m\,\infty}}$$

cea

No simple fit on **Chavagnat et al.** data What is the effect of L/e?

N.B. The mantle thickness δ is not the thermal boundary layer

Effect of the aspect ratio on bulk heating

• $L/e = 1 \Rightarrow \Delta T_{bulk} \approx 0$

⇒ Isothermal bulk assumption valid:

$$\frac{\partial E_m^{\prime\prime\prime}}{\partial t} + u_m \frac{\partial E_m^{\prime\prime\prime}}{\partial x} + \frac{v_m}{\delta} E_m^{\prime\prime\prime} = \frac{q_w^{\prime\prime}}{\delta}$$

Original model Nop et al. IJTS 2021:

- $L/e > 1 \Rightarrow \Delta T_{bulk} \nearrow$
- ⇒ Variable bulk temperature mandatory:

Extended Model

Boxplot showing $\Delta T_{bulk}(L/e)$ computed for all data investigated

3. Results and Discussion 4. Conclusion and Perspectives

Consequences of bulk heating on boiling crisis

Assumptions:

- δ known (here computed with the extended model)
- $q''_w(x,t) \propto e^{t/\tau}$

cea

 \Rightarrow Analytic expression for the transient CHF

Original model Nop et al. IJTS 2021:

 $q_{CHF}^{\prime\prime model}(P,L,\tau,\Delta T_{sub},G,\delta)$

Extended model: $q_{CHF}^{\prime\prime model}(P, L, e, \tau, \Delta T_{sub}, G, \delta)$

Bulk heating reduces the efficiency of heat exchanges - premature mygening or the boiling chais for myn Lre

Presentation key points

In these conditions, knowing $\delta \Rightarrow$ knowing transient CHF

$$L/e = 1$$
, $T_{bulk} \approx const$, original model assumption valid

•
$$L/e > 1$$
, $T_{bulk} \nearrow \Rightarrow q_{CHF}^{\prime\prime model} \searrow$, extended model mandatory

Upcoming work

Towards reactor geometries ($L \approx 50$ cm, L/e ≈ 250) by improving the model's physics

- Solving turbulent temperature fluctuations v'T' by coupling momentum and heat equation
- Take into account variation of fluid properties and pressure along the channel
- LES Thermo-hydraulic simulation using CEA opensource software TrioCFD

DB: DomainFlowLES.lata

First monophasic LES simulations of the BORAX Transient using TrioCFD software

Incompressible, constant properties flow $Re = 60\ 000,\ \tau = 20ms,\ \Delta T_{sub} = 160K$

Towards modeling the impact of aspect ratio in flow boiling - E. ROUMET, R.NOP, M.-C. DULUC, N. DORVILLE

Inverse method to estimate the heated mantle thickness $\boldsymbol{\delta}$

N.B. Numerical integration performed by explicit finite differences

Towards modeling the impact of aspect ratio in flow boiling - E. ROUMET, R.NOP, M.-C. DULUC, N. DORVILLE

Heat transport by the flow velocity fluctuations at the mantle-bulk interface

cea

Computation of the transverse turbulent characteristic velocity $\overrightarrow{v_m}$

Heat flux transported at the interface:

$$\overrightarrow{Q_{m/b}} = v_m \left(E_m^{\prime\prime\prime}(x,t) - E_b^{\prime\prime\prime}(x,t) \right) \overrightarrow{dS}$$

Characteristic transverse fluctuation velocity:

$$v_m = \int_0^{+\infty} v' P(v') dv'$$

Figure 8: *PDF* of the velocity fluctuations contributions at the interface. Computed using DNS data from Moser et Al. (1999) [PoF] and Graham et Al (2016)[JoT]

Towards modeling the impact of aspect ratio in flow boiling - E. ROUMET, R.NOP, M.-C. DULUC, N. DORVILLE