High-speed spray formation probed by Synchrotron X-ray

<u>Nathanaël Machicoane</u>¹, Santanu K. Sahoo¹, Oliver Tolfts¹, and Alexander Rack² ¹Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France ²ESRF - The European Synchrotron, 38000 Grenoble, France

- o Liquid-gas flows are critical in engineering process innovation and intensification
- o Liquid sprays are critical for combustion systems, manufacturing, heat management, chemical processing, painting, e.g.:
 - Liquid fuel sprays
 - > Liquid metal atomization
 - Spray cooling and coating
 - > Pharmaceutical, food, consumer products
 - > Fire safety
 - > Ship wake and sea spray

Gas-assisted Atomization Phenomena

<u>Accelerated</u> interface (transverse to shear)

Rayleigh–Taylor instability

Drop under strong air flow

Aero-driven

Rayleigh–Plateau instability

Interface aligned with <u>shear</u>

Shear or Kelvin–Helmholtz instability

0

0

8

0

O

Gravity-driven

Pilch and Erdman, IJMF 1987

P. Marmottant and E. Villermaux, JFM 2004

Atomization Regimes

Rims produce large drops that contain a large portion of the liquid volume → incomplete combustion/pollutants

Need for quantitative arguments for change between regimes

Experimental set-up

Droplet size distributions in the far-field

Can we understand the shape of the PDF(d) and how they vary in high-speed spray conditions?

High-speed sprays

A. Rack ID19

cnrs

2

2

- > No gas penetrated within the liquid jet's core
- Strong signature of flapping
- Formation of bags
- Localized Kelvin-Helmholtz perturbations
- Liquid structure reattachments encapsulate large air pockets
- Full wetting of the liquid nozzle with high curvature as the liquid jet is accelerated

y (mm) y (mm) Machicoane et al., IJMF 2019

Transition between intact liquid core and crown

recirculations

crown

between intact core and

 $M = \frac{\rho_g u_g^2}{\rho_l u_l^2}$

Kinetic energy

arguments seem

in good

agreement for

transition to

crown and

unstable crown

Rel

$$Re_{l} = 3100 \quad We_{g} = 800$$
Intro-

$$0.00 \text{ ms} \quad 500 \text{ }\mu\text{m}$$

$$0.00 \text{ ms} \quad 500 \text{ }\mu\text{m}$$

$$M = \frac{\rho_{g} u_{g}^{2}}{\rho_{l} u_{l}^{2}}$$

$$M = \frac{\rho_{g} u_{g}^{2}}{\rho_{l} u_{l}^{2}}$$

$$Kinetic \text{ energy}$$

$$arguments \text{ seem}$$

$$in good$$

$$agreement for$$

$$transition to$$

$$crown and$$

$$unstable crown$$

Quantitative identification of unstable crown and role of swirl

X-ray absorption by the liquid jet follows Beer-Lambert's law

→ Equivalent path length

Qno swirl

using ANKA Phase Weitkamp et al. J. of Synchrotron Radiation 2011

 Q_{swirl}

Quantitative identification of unstable crown and role of swirl

Flapping frequency

General conclusion

- \circ At higher We_a , liquid core undergoes transitions, up to unstable crown, even without gas swirl
- Changes in atomization regimes and liquid core morphologies are entangled
- Gas swirl leads to earlier onset of unstable crown and much more frequent motions of the gas recirculation
- Study other mechanisms (e.g., flapping and instabilities) with swirl to try and relate to droplet size distributions

a) $We_{g} = 45$

Thank you for your attention

February 10-14, 2025

Winter school NCTR VII

New Challenges in Turbulence Research

DES HOUCHES

Relative Weber number

Spectra Ym

ANKA Phase: from intensity to liquid thickness

Flux (photons/s)

ANKA Phase: from intensity to liquid thickness

Weitkamp et al., J. of Synchrotron Radiation 2011

 \rightarrow Calibrate for the coefficient α and β (non-monochromatic, spatial and temporal inhomogeneities...)

Calibration of the phase maps conversion

CNIS

Measurement uncertainties

pl

Limitations of the uncertainties' evaluation

- Nozzle glare (ANKA Phase is for a single material)
- Interference patterns due to X-ray scattering by interfaces limit the probing of small radius values
- → For $x > \frac{D_l}{10}$ and for EPL > 1 mm, approximately 10% accuracy (~ 20% for smaller thicknesses?)

