# Stability of non newtonian fluid flows down a slope

GDR TransInter Phase II, Aussois, 10-12 june 2025

Fabien Depoilly, S. Millet, S. Dagois-Bohy, F. Rousset et H. Ben Hadid

Laboratoire de Mécanique des Fluides et d'Acoustique - UMR5509





Figure 1: Roll waves on a chocolate fountain. Surface coating. Oroville dam spillway (2016). Landslide in Colorado (2014).

## Same configuration, various rheologies:

- Newtonian (water),
- Shear thinning / Viscoplastic (mud),
- Discontinuous Shear Thickening (cornstarch),



#### Same configuration, various rheologies:

- Newtonian (water),
- Shear thinning / Viscoplastic (mud),

Primary instability:

exponential growth

- Discontinuous Shear Thickening (cornstarch),
- . . .

#### Growth scenario:

Base flow





### Same configuration, various rheologies:

- Newtonian (water),
- Shear thinning / Viscoplastic (mud),

Primary instability:

exponential growth

- Discontinuous Shear Thickening (cornstarch),
- . . .

#### Growth scenario:

Base flow



If  $\operatorname{Re} > \operatorname{Re}_c$ 

## Our focus today: primary instability

# Some studies on the primary instability (very non exhaustive)

#### Newtonian fluids:

- Kapitza (ZETF, 1948)
- Yih (PoF, 1963)
- Benney (JMP, 1966)
- Liu & Gollub (JFM, 1993)
- Ruyer Quil & Manneville (Eur. Phys. J. B, 1998)
- ...

#### Viscoplastic fluids:

- Balmforth & Liu (JFM, 2004)
- Noma et al. (JFM, 2021)
- ...

#### Shear thinning fluids:

- Ng & Mei (JFM, 1994)
- Rousset et al. (JFE, 2007)
- Allouche et al.(JFM, 2017)
- ...

#### Discontinuous shear thickening fluids:

- Darbois-Texier et al. (JFM, 2023)
- ...

#### Other (funky) rheologies:

# Some studies on the primary instability (very non exhaustive)

#### Newtonian fluids:

- Kapitza (ZETF, 1948)
- Yih (PoF, 1963)
- Benney (JMP, 1966)
- Liu & Gollub (JFM, 1993)
- Ruyer Quil & Manneville (Eur. Phys. J. B, 1998)
- ...

#### Viscoplastic fluids:

- Balmforth & Liu (JFM, 2004)
- Noma et al. (JFM, 2021)

• ...

#### Question:

Is it possible to find a common framework to unify these studies ?

#### Shear thinning fluids:

- Ng & Mei (JFM, 1994)
- Rousset et al. (JFE, 2007)
- Allouche et al.(JFM, 2017)
- ...

#### Discontinuous shear thickening fluids:

- Darbois-Texier et al. (JFM, 2023)
- ...

#### Other (funky) rheologies:

#### Newtonian fluids:

- Kapitza (ZETF, 1948)
- Yih (PoF, 1963)
- Benney (JMP, 1966)
- Liu & Gollub (JFM, 1993)
- Ruyer Quil & Manneville (Eur. Phys. J. B, 1998)
- ...

#### **Viscoplastic fluids:**

- Balmforth & Liu (JFM, 2004)
- Noma et al. (JFM, 2021)

#### • ...

#### **Question:**

Is it possible to find a common framework to unify these studies ?

#### Answer:

Yes, if we are able to find a common framework for the fluid rheologies.

#### Shear thinning fluids:

- Ng & Mei (JFM, 1994)
- Rousset et al. (JFE, 2007)
- Allouche et al.(JFM, 2017)
- ...

#### Discontinuous shear thickening fluids:

- Darbois-Texier et al. (JFM, 2023)
- ...

#### Other (funky) rheologies:

The common framework: generalised Newtonian fluids

#### Newtonian fluid:

 $\tau(\dot{\gamma})=\eta\dot{\gamma}\rightarrow\eta={\rm constant}$  viscosity



# Generalised Newtonian fluids: viscosity

#### Newtonian fluid:

 $\tau(\dot{\gamma})=\eta\dot{\gamma}\rightarrow\eta={\rm constant}$  viscosity

**Generalised Newtonian fluid:** 

 $\tau(\dot{\gamma}) = \eta(\dot{\gamma})\dot{\gamma},$ 

•  $\eta(\dot{\gamma})$ : viscosity function.



#### Newtonian fluid:

 $\tau(\dot{\gamma})=\eta\dot{\gamma}\rightarrow\eta={\rm constant}$  viscosity

**Generalised Newtonian fluid:** 

 $\tau(\dot{\gamma}) = \eta(\dot{\gamma})\dot{\gamma},$ 

•  $\eta(\dot{\gamma})$ : viscosity function.



#### Fluids mentioned earlier are in fact generalised Newtonian fluids:

- Shear thinning fluid:  $\eta(\dot{\gamma}) = \kappa \dot{\gamma}^{n-1}$
- Viscoplastic fluid:  $\eta(\dot{\gamma}) = \frac{\tau_y}{\dot{\gamma}} + \kappa \dot{\gamma}^{n-1}$
- Discontinuous shear thickening:  $\eta(\dot{\gamma}) = \frac{\eta_s}{\left(\Phi_J(\tau) \Phi\right)^2}$

# Generalised Newtonian fluids: fluidity

#### Express $\dot{\gamma}$ as a function of $\tau$ : $\dot{\gamma} = \phi(\tau)\tau$

•  $\phi(\tau)$ : fluidity function.

Fluidity is the inverse of viscosity:

$$\phi(\tau) = \frac{1}{\eta(\dot{\gamma})}.$$



# Generalised Newtonian fluids: fluidity

#### Express $\dot{\gamma}$ as a function of $\tau$ : $\dot{\gamma} = \phi(\tau)\tau$

•  $\phi(\tau)$ : fluidity function.

Fluidity is the inverse of viscosity:

$$\phi(\tau) = \frac{1}{\eta(\dot{\gamma})}.$$

#### Rheological laws using fludity:

- Shear thinning fluid:  $\phi(\tau) = \frac{1}{\tau} \left(\frac{\tau}{\kappa}\right)^{1/n}$ ,
- Viscoplastic fluid:

$$\phi(\tau) = \frac{1}{\tau} \left(\frac{\tau - \tau_y}{\kappa}\right)^{1/n - 1},$$

• Discontinuous Shear Thickening:  $\phi(\tau) = \frac{(\Phi_J(\tau) - \Phi)^2}{\eta_s}.$ 



# Generalised Newtonian fluids: fluidity

#### Express $\dot{\gamma}$ as a function of $\tau$ : $\dot{\gamma} = \phi(\tau)\tau$

•  $\phi(\tau)$ : fluidity function.

Fluidity is the inverse of viscosity:

$$\phi(\tau) = \frac{1}{\eta(\dot{\gamma})}.$$

#### Rheological laws using fludity:

- Shear thinning fluid:  $\phi(\tau) = \frac{1}{\tau} \left(\frac{\tau}{\kappa}\right)^{1/n}$ ,
- Viscoplastic fluid:

$$\phi(\tau) = \frac{1}{\tau} \left(\frac{\tau - \tau_y}{\kappa}\right)^{1/n - 1},$$

• Discontinuous Shear Thickening:  $\phi(\tau) = \frac{(\Phi_J(\tau) - \Phi)^2}{2}.$ 

$$\eta_s$$

# Strategy for a generalised model: keep $\eta$ and $\phi$ known but unspecified.



# Orr-Sommerfeld equations for a generalized Newtonian fluid

### 2D, incompressible, isothermal flow:

- density:  $\rho$ ,
- velocity:  $\boldsymbol{u} = (u, v)$ ,
- pressure: p,
- shear stresses:  $au_{xx}$  and  $au_{xy}$ ,
- film thickness: h(x, t),
- surface tension:  $\sigma$ .



# 2D, incompressible, isothermal flow:

- density:  $\rho$ ,
- velocity:  $\boldsymbol{u} = (u, v)$ ,
- pressure: p,
- shear stresses:  $au_{xx}$  and  $au_{xy}$ ,
- film thickness: h(x,t),
- surface tension:  $\sigma$ .

#### Navier-Stokes equations:

$$\begin{split} \partial_x u + \partial_y v &= 0, \\ \rho(\partial_t u + u \partial_x u + v \partial_y u) &= -\partial_x p + \partial_x \tau_{xx} + \partial_y \tau_{xy} + \rho g \sin \theta, \\ \rho(\partial_t v + u \partial_x v + v \partial_y v) &= -\partial_y p + \partial_x \tau_{xy} - \partial_y \tau_{xx} - \rho g \cos \theta, \\ &+ \text{boundary conditions} \end{split}$$

with  $\phi(\tau)\tau_{xx} = 2\partial_x u$  and  $\phi(\tau)\tau_{xy} = \partial_y u + \partial_x v$ .



#### "Natural" scales:

- undisturbed film thickness:  $h_0$ ,
- bottom shear stress:

 $\tau_b = \rho g h_0 \sin \theta.$ 



#### "Natural" scales:

- undisturbed film thickness:  $h_0$ ,
- bottom shear stress:

 $\tau_b = \rho g h_0 \sin \theta.$ 

#### **Rheology based scales:**

• bottom shear rate:

$$\dot{\gamma}_b = \phi(\tau_b) \tau_b$$



#### "Natural" scales:

- undisturbed film thickness:  $h_0$ ,
- bottom shear stress:
  - $\tau_b = \rho g h_0 \sin \theta.$

#### Rheology based scales:

- bottom shear rate:
  - $\dot{\gamma}_b = \phi(\tau_b) \tau_b$ ,
- velocity:  $u_0 = h_0 \dot{\gamma}_b$ ,



## "Natural" scales:

- undisturbed film thickness:  $h_0$ ,
- bottom shear stress:

 $\tau_b = \rho g h_0 \sin \theta.$ 

#### Rheology based scales:

- bottom shear rate:
  - $\dot{\gamma}_b = \phi(\tau_b)\tau_b,$
- velocity:  $u_0 = h_0 \dot{\gamma}_b$ ,
- pressure:  $p_0 = \rho u_0^2$ .



#### "Natural" scales:

- undisturbed film thickness:  $h_0$ ,
- bottom shear stress:
  - $\tau_{b} = \rho g h_{0} \sin \theta.$

#### Rheology based scales:

- bottom shear rate:
  - $\dot{\gamma}_b = \phi(\tau_b) \tau_b$ ,
- velocity:  $u_0 = h_0 \dot{\gamma}_b$ ,
- pressure:  $p_0 = \rho u_0^2$ .

**Dimensionless numbers:** 

$$\operatorname{Re} = \frac{\rho u_0 h_0}{\eta(\dot{\gamma}_b)} \quad \text{and} \quad \operatorname{Bo} = \frac{\rho g h_0^2 \sin \theta}{\sigma},$$
$$+ \operatorname{rheology} \text{ hased numbers}$$



#### **Dimensionless N.S equations:**

$$\partial_x u + \partial_y v = 0,$$
  

$$\operatorname{Re}(\partial_t u + u \partial_x u + v \partial_y u) = -\operatorname{Re}\partial_x p + \partial_x \tau_{xx} + \partial_y \tau_{xy} + 1,$$
  

$$\operatorname{Re}(\partial_t v + u \partial_x v + v \partial_y v) = -\operatorname{Re}\partial_y p + \partial_x \tau_{xy} - \partial_y \tau_{xx} - \cot \theta,$$
  

$$+ \text{ boundary conditions.}$$

#### **Dimensionless N.S equations:**

$$\partial_x u + \partial_y v = 0,$$
  

$$\operatorname{Re}(\partial_t u + u \partial_x u + v \partial_y u) = -\operatorname{Re}\partial_x p + \partial_x \tau_{xx} + \partial_y \tau_{xy} + 1,$$
  

$$\operatorname{Re}(\partial_t v + u \partial_x v + v \partial_y v) = -\operatorname{Re}\partial_y p + \partial_x \tau_{xy} - \partial_y \tau_{xx} - \cot \theta,$$
  

$$+ \text{ boundary conditions.}$$

#### Base flow assumptions:

- steady state:  $\partial_t = 0$ ,
- constant thickness: h(x,t) = H = 1,
- parallel to the wall:  ${\boldsymbol U}(x,y)=(U(y),0),$



#### Simplified equations:

$$\partial_y T_{xy} = -1,$$
  

$$\operatorname{Re}\partial_y P = -\cot\theta,$$
  

$$\partial_y U = \phi(T_{xy})T_{xy},$$
  
+ boundary conditions.

#### Base flow:



$$T_{xy}(y) = 1 - y$$
,  $\operatorname{Re}P(y) = (1 - y) \cot \theta$ 

#### Simplified equations:

$$\partial_y T_{xy} = -1,$$
  

$$\operatorname{Re}\partial_y P = -\cot\theta,$$
  

$$\partial_y U = \phi(T_{xy})T_{xy},$$
  
+ boundary conditions

#### Base flow:



H = 1

U(y)

θ

 $T_{xy}(y)$ 

#### **Simplified equations:**

$$\partial_y T_{xy} = -1,$$
  
 $\operatorname{Re}\partial_y P = -\cot\theta,$   
 $\partial_y U = \phi(T_{xy})T_{xy},$   
+ boundary conditions.

#### **Base flow:**



$$T_{xy}(y) = 1 - y, \quad \operatorname{Re}P(y) = (1 - y) \cot \theta, \quad U(y) = \int_0^y \phi(1 - y_1) (1 - y_1) \, \mathrm{d}y_1.$$

U(y) depends only on the rheology which is known!

Small pertubations around the base flow:

 $u=U+\tilde{u},\quad v=\tilde{v},\quad p=P+\tilde{p},\quad h=1+\tilde{h},\quad \tau=T+\tilde{\tau},\quad \dot{\gamma}=\dot{\Gamma}+\ddot{\dot{\gamma}}.$ 

 $\mathsf{Perturbations} \to \mathsf{N.S} \text{ equations} \to \mathsf{linearisation}$ 

Small pertubations around the base flow:

$$\begin{split} u &= U + \tilde{u}, \quad v = \tilde{v}, \quad p = P + \tilde{p}, \quad h = 1 + \tilde{h}, \quad \tau = T + \tilde{\tau}, \quad \dot{\gamma} = \dot{\Gamma} + \tilde{\dot{\gamma}}. \end{split}$$
 Perturbations  $\rightarrow$  N.S equations  $\rightarrow$  linearisation

Linearised N.S equations for the perturbations:

$$\begin{split} \partial_x \tilde{u} + \partial_y \tilde{v} &= 0, \\ \operatorname{Re}(\partial_t \tilde{u} + U \partial_x \tilde{u} + \tilde{v} \partial_y U) &= -\operatorname{Re}\partial_x \tilde{p} + \partial_x \tilde{\tau}_{xx} + \partial_y \tilde{\tau}_{xy}, \\ \operatorname{Re}(\partial_t \tilde{v} + U \partial_x \tilde{v}) &= -\operatorname{Re}\partial_y \tilde{p} + \partial_x \tilde{\tau}_{xy} - \partial_y \tilde{\tau}_{xx}, \\ &+ \operatorname{boundary \ conditions.} \end{split}$$

Small pertubations around the base flow:

$$\begin{split} u &= U + \tilde{u}, \quad v = \tilde{v}, \quad p = P + \tilde{p}, \quad h = 1 + \tilde{h}, \quad \tau = T + \tilde{\tau}, \quad \dot{\gamma} = \dot{\Gamma} + \tilde{\dot{\gamma}}. \end{split}$$
 Perturbations  $\rightarrow$  N.S equations  $\rightarrow$  linearisation

Linearised N.S equations for the perturbations:

$$\begin{split} \partial_x \tilde{u} + \partial_y \tilde{v} &= 0, \\ \operatorname{Re}(\partial_t \tilde{u} + U \partial_x \tilde{u} + \tilde{v} \partial_y U) &= -\operatorname{Re}\partial_x \tilde{p} + \partial_x \tilde{\tau}_{xx} + \partial_y \tilde{\tau}_{xy}, \\ \operatorname{Re}(\partial_t \tilde{v} + U \partial_x \tilde{v}) &= -\operatorname{Re}\partial_y \tilde{p} + \partial_x \tilde{\tau}_{xy} - \partial_y \tilde{\tau}_{xx}, \\ &+ \operatorname{boundary \ conditions.} \end{split}$$

Stream function and normal modes decomposition:

$$\begin{split} \tilde{u} &= \partial_y \Psi \quad \text{and} \quad \tilde{v} = -\partial_x \Psi, \\ \Psi &= \psi(y) \exp\left(i \alpha (x-ct)\right), \end{split}$$

with  $\alpha$ : wavenumber, c: phase velocity.

# **Perturbation equations**

#### **Orr-Sommerfeld equation:**

$$i\alpha \operatorname{Re}\left((\frac{U}{U}-c)(\psi''+\alpha^{2}\psi)-\frac{U''\psi}{\psi}\right) = -\left(\frac{\psi''}{U''}\right)''-\alpha^{2}\left(\left(\frac{\psi}{U''}\right)''+4\left(\frac{\psi'}{\phi}\right)'+\frac{\psi''}{U''}\right)-\alpha^{4}\frac{\psi}{U''}.$$

+ boundary conditions.

Depends only on the fluidity through  $U = \int_0^y \phi(1-y_1)(1-y_1) dy_1.$ 

# **Perturbation equations**

#### **Orr-Sommerfeld equation:**

$$i\alpha \operatorname{Re}\left((\underline{U}-c)(\psi''+\alpha^{2}\psi)-\underline{U}''\psi\right) = -\left(\frac{\psi''}{\overline{U}''}\right)''-\alpha^{2}\left(\left(\frac{\psi}{\overline{U}''}\right)''+4\left(\frac{\psi'}{\phi}\right)'+\frac{\psi''}{\overline{U}''}\right)-\alpha^{4}\frac{\psi}{\overline{U}''}.$$

+ boundary conditions.

Depends only on the fluidity through  $U = \int_0^y \phi(1-y_1)(1-y_1) \mathrm{d}y_1.$ 

In what follows:

Asyptotic resolution:

- long waves  $(\alpha \rightarrow 0)$ ,
- stability onset,
- comparision with various experimental results.

# **Perturbation equations**

## **Orr-Sommerfeld equation:**

$$i\alpha \operatorname{Re}\left((\underline{U}-c)(\psi''+\alpha^{2}\psi)-\underline{U}''\psi\right) = -\left(\frac{\psi''}{\overline{U}''}\right)''-\alpha^{2}\left(\left(\frac{\psi}{\overline{U}''}\right)''+4\left(\frac{\psi'}{\phi}\right)'+\frac{\psi''}{\overline{U}''}\right)-\alpha^{4}\frac{\psi}{\overline{U}''}.$$

+ boundary conditions.

Depends only on the fluidity through  $U = \int_0^y \phi(1-y_1)(1-y_1) \mathrm{d}y_1.$ 

In what follows:

Asyptotic resolution:

- long waves  $(\alpha \rightarrow 0)$ ,
- stability onset,
- comparision with various experimental results.

#### Numerical resolution:

- dispersion curves,
- comparison with experimental results.

# Asymptotic resolution at long waves

## Temporal stability: $\alpha \in \mathbb{R}$ fixed, $\psi$ and $c \in \mathbb{C}$ variables

Temporal stability:  $\alpha \in \mathbb{R}$  fixed,  $\psi$  and  $c \in \mathbb{C}$  variables Power series in  $\alpha$ :

 $c = c_0 + \alpha c_1 + \alpha^2 c_2 + \dots$  and  $\psi = \psi_0 + \alpha \psi_1 + \alpha^2 \psi_2 + \dots$ 

Temporal stability:  $\alpha \in \mathbb{R}$  fixed,  $\psi$  and  $c \in \mathbb{C}$  variables Power series in  $\alpha$ :

 $c = c_0 + \alpha c_1 + \alpha^2 c_2 + \dots$  and  $\psi = \psi_0 + \alpha \psi_1 + \alpha^2 \psi_2 + \dots$ 

0<sup>th</sup> order:

$$c_0 = 1 \rightarrow c_0^{dim} = \mathbf{u_0} = \dot{\gamma}_b h_0,$$

Temporal stability:  $\alpha \in \mathbb{R}$  fixed,  $\psi$  and  $c \in \mathbb{C}$  variables Power series in  $\alpha$ :

 $c = c_0 + \alpha c_1 + \alpha^2 c_2 + \dots$  and  $\psi = \psi_0 + \alpha \psi_1 + \alpha^2 \psi_2 + \dots$ 

0<sup>th</sup> order:

$$c_0 = 1 \rightarrow c_0^{dim} = \mathbf{u_0} = \dot{\gamma}_b h_0,$$

1<sup>st</sup> order:  $\operatorname{Re}_{c} = \frac{1 - 2q}{1 - 4q + 2(\mathcal{M} + \mathcal{K})} \cot \theta,$ with  $q = \underbrace{\int_{0}^{1} U(y) dy}_{\text{flow rate}}$ ,  $\mathcal{M} = \underbrace{\int_{0}^{1} U^{2}(y) dy}_{\text{exshape factor}}$  and  $\mathcal{K} = \underbrace{\int_{0}^{1} \int_{0}^{y} \int_{0}^{y_{1}} (U'(y_{2}))^{2} dy_{2} dy_{1} dy}_{\text{exshape factor}}$ 

Depoilly et al. (PLOS One, 2024)

#### Newtonian fluid:

$$\tau(\dot{\gamma}) = \dot{\gamma}$$



#### Newtonian fluid:

$$\tau(\dot{\gamma})=\dot{\gamma}$$

#### Carreau fluid (shear-thinning):

$$\tau\left(\dot{\gamma}\right) = \left(\frac{1+\left(\dot{\gamma}/\dot{\gamma}_{0}\right)^{2}}{1+\left(1/\dot{\gamma}_{0}\right)^{2}}\right)^{\frac{n-1}{2}}\dot{\gamma}$$



Carreau (Trans. Soc. Rheol., 1972)

#### Newtonian fluid:

$$\tau(\dot{\gamma})=\dot{\gamma}$$

#### Carreau fluid (shear-thinning):

$$\tau \left( \dot{\gamma} \right) = \left( \frac{1 + \left( \dot{\gamma} / \dot{\gamma}_0 \right)^2}{1 + \left( 1 / \dot{\gamma}_0 \right)^2} \right)^{\frac{n-1}{2}} \dot{\gamma}$$

Herschel-Bulkley fluid:

$$\tau(\dot{\gamma}) = \mathbf{B} + (1 - \mathbf{B})\dot{\gamma}^n$$



Herschel & Bulkley (Kolloid-Zeitschrift, 1926)

#### Newtonian fluid:

$$\tau(\dot{\gamma})=\dot{\gamma}$$

#### Carreau fluid (shear-thinning):

$$\tau(\dot{\gamma}) = \left(\frac{1 + (\dot{\gamma}/\dot{\gamma}_0)^2}{1 + (1/\dot{\gamma}_0)^2}\right)^{\frac{n-1}{2}} \dot{\gamma}$$

Herschel-Bulkley fluid:

$$\tau(\dot{\gamma}) = \mathbf{B} + (1 - \mathbf{B})\dot{\gamma}^n$$

Wyart-Cates law for shear-thickening suspensions:

$$\dot{\gamma}(\tau) = \left(\frac{\Phi_J(\tau) - \Phi}{\Phi_J(1) - \Phi}\right)^2 \tau,$$

 $\Phi$ : volumic fraction,  $\Phi_J$  : jamming fraction.

#### Wyart & Cates (PRL, 2014)





Noma *et al.* (JFM, 2021) Darbois-Texier *et al.* (JFM, 2023) Allouche *et al.*(JFM, 2017)

# Numerical resolution and dispersion curves

**Spatial stability:** Pulsation  $\omega = \alpha c \in \mathbb{R}$  fixed,  $\psi$  and  $\alpha \in \mathbb{C}$  variables  $\alpha_R$ : wavenumber,  $-\alpha_I$ : growth rate.

**Spatial stability:** Pulsation  $\omega = \alpha c \in \mathbb{R}$  fixed,  $\psi$  and  $\alpha \in \mathbb{C}$  variables  $\alpha_R$ : wavenumber,  $-\alpha_I$ : growth rate.

#### What we want:

- dispersion curves  $\alpha = f(\omega, {\rm Re})$ 
  - $\rightarrow$  numerical resolution of O.S

**Spatial stability:** Pulsation  $\omega = \alpha c \in \mathbb{R}$  fixed,  $\psi$  and  $\alpha \in \mathbb{C}$  variables  $\alpha_R$ : wavenumber,  $-\alpha_I$ : growth rate.

#### What we want:

- dispersion curves  $\alpha = f(\omega, \text{Re})$  $\rightarrow$  numerical resolution of O.S
- comparison with experiments

 $\rightarrow$  for Newtonian and Herschel-Bulkley fluids

- easier for spatial stability (polynomial eigenavlue problem),
- well suited for stiff problems.

- easier for spatial stability (polynomial eigenavlue problem),
- well suited for stiff problems.

#### **General idea:**

• fixed  $\operatorname{Re}$  and  $\omega$  :

- easier for spatial stability (polynomial eigenavlue problem),
- well suited for stiff problems.

#### **General idea:**

- fixed  $\operatorname{Re}$  and  $\omega$  :
- find  $\alpha$  that is root of the kinematic B.C:

 $\alpha \left( U\left( 1\right) +\psi \left( 1\right) \right) -\omega =0$ 

 $\rightarrow$  integration of O.S at each root-finding iteration

- easier for spatial stability (polynomial eigenavlue problem),
- well suited for stiff problems.

#### **General idea:**

- fixed  $\operatorname{Re}$  and  $\omega$  :
- find  $\alpha$  that is root of the kinematic B.C:

$$\alpha \left( U\left( 1\right) +\psi \left( 1\right) \right) -\omega =0$$

 $\rightarrow$  integration of O.S at each root-finding iteration

• repeat for multiple  $\omega$ .

# Dispersion curves for a Newtonian fluid

![](_page_52_Figure_1.jpeg)

#### Herschel-Bulkley rheological law:

- $\tau(\dot{\gamma}) = \mathbf{B} + (1 \mathbf{B})\dot{\gamma}^n$
- B: dimensionless yield stress,
- $n \leq 1$ : rheological index.

![](_page_53_Figure_5.jpeg)

Diverging viscosity at  $\dot{\gamma} \rightarrow 0$  !

$$\tau(\dot{\gamma}) = \mathbf{B} + (1 - \mathbf{B})$$

![](_page_54_Figure_3.jpeg)

$$\tau(\dot{\gamma}) = B \left(1 - \exp\left(-\dot{\gamma}/\dot{\gamma}_0\right)\right) + (1 - B)$$

Papanastasiou-like regularization for the yield stress,

![](_page_55_Figure_4.jpeg)

Papanastasiou (Journal of Rheology, 1987)

$$\tau(\dot{\gamma}) = \mathcal{B}\left(1 - \exp\left(-\dot{\gamma}/\dot{\gamma}_{0}\right)\right) + (1 - \mathcal{B})\left(\frac{1 + (\dot{\gamma}/\dot{\gamma}_{0})^{2}}{1 + (1/\dot{\gamma}_{0}^{2})}\right)^{\frac{n-1}{2}} \dot{\gamma}^{n}$$

- Papanastasiou-like regularization for the yield stress,
- Carreau-like regularization for  $\dot{\gamma}^n$ ,

![](_page_56_Figure_5.jpeg)

Papanastasiou (Journal of Rheology, 1987) Carreau (Trans. Soc. Rheol., 1972)

$$\tau(\dot{\gamma}) = \mathcal{B}\left(1 - \exp\left(-\dot{\gamma}/\dot{\gamma}_{0}\right)\right) + (1 - \mathcal{B})\left(\frac{1 + (\dot{\gamma}/\dot{\gamma}_{0})^{2}}{1 + (1/\dot{\gamma}_{0}^{2})}\right)^{\frac{n-1}{2}} \dot{\gamma}^{n}$$

- Papanastasiou-like regularization for the yield stress,
- Carreau-like regularization for  $\dot{\gamma}^n$  ,
- $\dot{\gamma}_0$ : regularization parameter, no physical meaning.

Choose  $\dot{\gamma}_0$  as small as possible!

Papanastasiou (Journal of Rheology, 1987) Carreau (Trans. Soc. Rheol., 1972)

![](_page_57_Picture_8.jpeg)

#### **Experimental setup:**

- angle  $\theta\approx 1^\circ-30^\circ$  ,
- imposed pulsation  $\omega$ ,
- fluid used: Carbopol 980 (Lubrizol),

![](_page_58_Picture_5.jpeg)

#### **Experimental setup:**

- angle  $\theta\approx 1^\circ-30^\circ$  ,
- imposed pulsation  $\omega$ ,
- fluid used: Carbopol 980 (Lubrizol),

# Measurement of $\alpha$ :

• translating laser at velocity v:

 $s(t) \propto \cos\left((\omega - \alpha_R v)t\right) \exp\left(-\alpha_I v t\right)$ 

Doppler effect  $\rightarrow$  Fourier analysis  $\rightarrow \alpha$ .

![](_page_59_Picture_9.jpeg)

Yoshida et al. (Jour. of Phys. E, 1981)

# Dispersion curves for viscoplastic fluids

![](_page_60_Figure_1.jpeg)

# Dispersion curves for viscoplastic fluids

![](_page_61_Figure_1.jpeg)

# Conclusion

#### **Generalized model:**

- generalised Newtonian fluids:  $\tau(\dot{\gamma}) = \eta(\dot{\gamma})\dot{\gamma}$  or  $\dot{\gamma} = \phi(\tau)\tau$ ,
- Orr-Sommerfeld equation.

# Conclusion

#### Generalized model:

- generalised Newtonian fluids:  $\tau(\dot{\gamma}) = \eta(\dot{\gamma})\dot{\gamma}$  or  $\dot{\gamma} = \phi(\tau)\tau$ ,
- Orr-Sommerfeld equation.

#### Long wave analysis:

- wave celerity  $c_0$  and stability threshold  $\operatorname{Re}_c$ ,
- good agreement with experimental results for all rheologies found in literature.

![](_page_63_Figure_7.jpeg)

# Conclusion

#### Generalized model:

- generalised Newtonian fluids:  $\tau(\dot{\gamma}) = \eta(\dot{\gamma})\dot{\gamma}$  or  $\dot{\gamma} = \phi(\tau)\tau$ ,
- Orr-Sommerfeld equation.

#### Long wave analysis:

- wave celerity  $c_0$  and stability threshold  $\operatorname{Re}_c$ ,
- good agreement with experimental results for all rheologies found in literature.

![](_page_64_Figure_7.jpeg)

#### **Dispersion curves:**

- $\alpha = f(\omega, \operatorname{Re})$ ,
- good agreement for the growth rate,
- trickier to predict wave velocity.

![](_page_64_Figure_12.jpeg)

### More experiments:

- explore new rheologies (Carreau, ...),
- further validation of our model.

#### Generalise other models:

- Benney equation, integrated models,
- non-linear stability.

# Add more funky effects:

• viscoelasticity.

![](_page_65_Picture_9.jpeg)

# Thank you very much !